【题目】某校九年级有900名学生,在体育考试前随机抽取部分学生进行跳绳测试,根据测试成绩制作了下面两个统计图.请根据相关信息,解答下列问题:
(Ⅰ)本次参加跳绳测试的学生人数为________,图①中的值为________;
(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
(Ⅲ)根据样本数据,估计该校九年级跳绳测试中,成绩超过3分的学生有多少人?
【答案】(Ⅰ)50人,10;(Ⅱ)3.7,4,4;(Ⅲ)630人.
【解析】
(Ⅰ)求得直方图中各组人数的和即可求得跳绳的学生人数,利用百分比的意义求得m;
(Ⅱ)利用加权平均数公式求得平均数,然后利用众数、中位数定义求解;
(Ⅲ)利用总人数乘以对应的百分比即可求解.
解:(Ⅰ)10+5+25+10=50(人),;
∴本次参加跳绳测试的学生人数为50人,的值为10.
故答案为:50人,10;
(Ⅱ)观察条形统计图,∵(分),
∴本次调查获取的样本数据的平均数是3.7分.
∵在这组样本数据中,4出现了25次,出现的次数最多,
∴这组样本数据的众数是4.
将这组样本数据按照由小到大的顺序排列,其中处于中间位置的两个数都是4,
有,
∴这组样本数据的中位数是4.
(Ⅲ)∵在50名学生中,跳绳测试得4分、5分的学生人数比例分别为,,
∴(人).
答:根据样本数据,估计该校九年级跳绳测试中超过3分的学生约有630人.
科目:初中数学 来源: 题型:
【题目】为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:
甲型客车 | 乙型客车 | |
载客量(人/辆) | 35 | 30 |
租金(元/辆) | 400 | 320 |
学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.
(1)参加此次研学活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为 辆;
(3)学校共有几种租车方案?最少租车费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中OP为下水管道口直径,OB为可绕转轴O自由转动的阀门.平时阀门被管道中排出的水冲开,可排出城市污水;当河水上涨时,阀门会因河水压迫而关闭,以防河水倒灌入城中.若阀门的直径OB=OP=100cm,OA为检修时阀门开启的位置,且OA=OB.
(1)直接写出阀门被下水道的水冲开与被河水关闭过程中∠POB的取值范围;
(2)为了观测水位,当下水道的水冲开阀门到达OB位置时,在点A处测得俯角∠CAB=67.5°,若此时点B恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留小数点后一位)
(=1.41,sin67.5°=0.92,cos67.5°=0.38,tan67.5°=2.41,sin22.5°=0.38,cos22.5°=0.92,tan22.5°=0.41)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,为原点,点,点,把绕点顺时针旋转,得,点,旋转后的对应点为,.记旋转角为.
(Ⅰ)如图①,若,求的长;
(Ⅱ)如图②,若,求点的坐标;
(Ⅲ)记为的中点,S为的面积,求S的取值范围(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利120元.
(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)
(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个斜抛物体的水平运动距离为x(m),对应的高度记为h(m),且满足h=ax2+bx﹣11a(其中a≠0).已知当x=0时,h=2;当x=10时,h=2.
(1)求h关于x的函数表达式.
(2)求斜抛物体的最大高度和达到最大高度时的水平距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的顶点 A的坐标为(4,2),顶点B,C分别在轴,轴的正半轴上.
(1)求证:∠OCB=∠ABE;
(2)求OC长的取值范围;
(3)若D的坐标为(,),请说明随的变化情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“今有善行者行一百步,不善行者行六十步”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步,假定两者步长相等,据此回答以下问题:
(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?
(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com