【题目】如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与X轴交于点C,与Y轴交于点D,已知,A(n,1),点B的坐标为(﹣2,m)
(1)求反比例函数的解析式和一次函数的解析式;
(2)连结BO,求△AOB的面积;
(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是 .
【答案】(1)y=;y=x﹣;(2);(3)﹣2<x<0或x>3;
【解析】
(1)过A作AM⊥x轴于M,根据勾股定理求出OM,得出A的坐标,把A得知坐标代入反比例函数的解析式求出解析式,吧B的坐标代入求出B的坐标,吧A、B的坐标代入一次函数的解析式,即可求出解析式.
(2)求出直线AB交y轴的交点坐标,即可求出OD,根据三角形面积公式求出即可.
(3)根据A、B的横坐标结合图象即可得出答案.
解:
(1)过A作AM⊥x轴于M,
则AM=1,OA=,由勾股定理得:OM=3,
即A的坐标是(3,1),
把A的坐标代入y=得:k=3,
即反比例函数的解析式是y=.
把B(﹣2,n)代入反比例函数的解析式得:n=﹣,
即B的坐标是(﹣2,﹣),
把A、B的坐标代入y=ax+b得:,
解得:k=.b=﹣,
即一次函数的解析式是y=x﹣.
(2)连接OB,
∵y=x﹣,
∴当x=0时,y=﹣,
即OD=,
∴△AOB的面积是S△BOD+S△AOD=××2+××3=.
(3)一次函数的值大于反比例函数的值时x的取值范围是﹣2<x<0或x>3,
故答案为:﹣2<x<0或x>3.
科目:初中数学 来源: 题型:
【题目】小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是( )
A. 两人从起跑线同时出发,同时到达终点.
B. 小苏跑全程的平均速度大于小林跑全程的平均速度.
C. 小苏在跑最后100m的过程中,与小林相遇2次.
D. 小苏前15s跑过的路程小于小林前15s跑过的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,将两个含30°角的三角尺摆放在一起,可以证得△ABD是等边三角形,于是我们得到:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
交换命题的条件和结论,得到下面的命题:
在直角△ABC中,∠ACB=90°,如果,那么∠BAC=30°.
请判断此命题的真假,若为真命题,请给出证明;若为假命题,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现:
如图1,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为__________;
(2)深入探究:
如图2,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
(3)拓展延伸:
如图3,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小华和小晶上山游玩,小华步行,小晶乘坐缆车,相约在山顶缆车的终点会合. 已知小华歩行的路程是缆车所经线路长的2倍,小晶在小华出发后50分钟才坐上缆车,缆车的平均速度为每分钟180米. 图中的折线反映了小华行走的路程(米)与时间(分钟)之间的函数关系.
(1)小华行走的总路程是___________米,他途中休息了___________分钟;小华休息之后行走的速度是每分钟___________米;
(2)当时,与的函数关系式是___________.
(3)当小晶到达缆车终点时,小华离缆车终点的路程是___________米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校在八年级新生中举行了全员参加的数学应用能力大赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理数据:
人数 班级 | 60分人数 | 70分人数 | 80分人数 | 90分人数 | 100分人数 |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | 1 | |
3班 | 1 | 1 | 4 | 2 | 2 |
平均数 | 中位数 | 众数 | |
83 | 80 | 80 | |
2班 | 83 | ||
3班 | 80 | 80 |
分析数据:
根据以上信息回答下列问题:
(1)请直接写出表格中,,,的值;
(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由(写两条支持你结论的理由).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.
(1)用含x的代数式表示线段CF的长;
(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;
(3)当∠ABE的正切值是时,求AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com