精英家教网 > 初中数学 > 题目详情

【题目】初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m

1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?

2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?

【答案】1y=(x4)2+4;能够投中;(2)能够盖帽拦截成功.

【解析】

1)根据题意可知:抛物线经过(0),顶点坐标是(44),然后设出抛物线的顶点式,将(0)代入,即可求出抛物线的解析式,然后判断篮圈的坐标是否满足解析式即可;

2)当时,求出此时的函数值,再与3.1m比较大小即可判断.

解:由题意可知,抛物线经过(0),顶点坐标是(44).

设抛物线的解析式是

将(0)代入,得

解得

所以抛物线的解析式是

篮圈的坐标是(73),代入解析式得

∴这个点在抛物线上,

∴能够投中

答:能够投中.

2)当时,<3.1

所以能够盖帽拦截成功.

答:能够盖帽拦截成功.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,, 是边上一动点(不与重合)=于点,,则线段的最大值为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:

1)本次调查中,王老师一共调查了   名学生;

2)将条形统计图补充完整;

3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象如图所示,有以下结论:其中所有正确结论的序号是( )

A. ①② B. ①③④ C. ①②③⑤ D. ①②③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数.

(1)当二次函数的图象经过坐标原点O(0,0)求二次函数的解析式

(2)如图m=2该抛物线与y轴交于点C顶点为D求C、D两点的坐标

(3)(2)的条件下,x轴上是否存在一点P使得PC+PD最短若P点存在求出P点的坐标若P点不存在请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边ABC中,把ABC沿直线MN翻折,点A落在线段BC上的D点位置(D不与BC重合),设∠AMNα

1)用含α的代数式表示∠MDB和∠NDC,并确定的α取值范围;

2)若α45°,求BDDC的值;

3)求证:AMCNANBD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+2x+cx轴交于A(﹣10B30)两点,与y轴交于点C

1)求抛物线y=ax2+2x+c的解析式:;

2)点D为抛物线上对称轴右侧、x轴上方一点,DEx轴于点EDFAC交抛物线对称轴于点F,求DE+DF的最大值;

3)①在拋物线上是否存在点P,使以点APC为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;

②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2-(m+2)x+(2m-1)=0。

(1)求证:方程恒有两个不相等的实数根;

(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。

查看答案和解析>>

同步练习册答案