精英家教网 > 初中数学 > 题目详情

【题目】如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.

(1)当t为何值时,点Q与点D重合?
(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.
(3)若⊙P与线段QC只有一个公共点,求t的取值范围.

【答案】
(1)

解:∵OA=6,OB=8,

∴由勾股定理可求得:AB=10,

由题意知:OQ=AP=t,

∴AC=2t,

∵AC是⊙P的直径,

∴∠CDA=90°,

∴CD∥OB,

∴△ACD∽△ABO,

∴AD=

当Q与D重合时,

AD+OQ=OA,

+t=6,

∴t=


(2)

解:当⊙Q经过A点时,如图1,

OQ=OA﹣QA=4,

∴t= =4s,

∴PA=4,

∴BP=AB﹣PA=6,

过点P作PE⊥OB于点E,⊙P与OB相交于点F、G,

连接PF,

∴PE∥OA,

∴△PEB∽△AOB,

∴PE=

∴由勾股定理可求得:EF=

由垂径定理可求知:FG=2EF=


(3)

解:当QC与⊙P相切时如图2,

此时∠QCA=90°,

∵OQ=AP=t,

∴AQ=6﹣t,AC=2t,

∵∠A=∠A,

∠QCA=∠AOB,

∴△AQC∽△ABO,

∴t=

∴当0<t≤ 时,⊙P与QC只有一个交点,

当QC⊥OA时,

此时Q与D重合,

由(1)可知:t=

∴当 <t≤5时,⊙P与QC只有一个交点,

综上所述,当,⊙P与QC只有一个交点,t的取值范围为:0<t≤ <t≤5.


【解析】(1)由题意知CD⊥OA,所以△ACD∽△ABO,利用对应边的比求出AD的长度,若Q与D重合时,则,AD+OQ=OA,列出方程即可求出t的值;(2)由于0<t≤5,当Q经过A点时,OQ=4,此时用时为4s,过点P作PE⊥OB于点E,利用垂径定理即可求出⊙P被OB截得的弦长;(3)若⊙P与线段QC只有一个公共点,分以下两种情况,①当QC与⊙P相切时,计算出此时的时间;②当Q与D重合时,计算出此时的时间;由以上两种情况即可得出t的取值范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2

①把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1
②以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)计算:4sin60°﹣|3﹣ |+( 2
(2)解方程:x2 x﹣ =0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了相应“足球进校园”的号召,某体育用品商店计划购进一批足球,第一次用6000元购进A品牌足球m个,第二次又用6000元购进B品牌足球,购进的B品牌足球的数量比购进的A品牌足球多30个,并且每个A品牌足球的进价是每个B品牌足球的进价的
(1)求m的值;
(2)若这两次购进的A,B两种品牌的足球分别按照a元/个, a元/个两种价格销售,全部销售完毕后,可获得的利润不低于4800元,求出a的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)计算:|﹣ |﹣ +2sin60°+( 1+(2﹣ 0
(2)先化简,再求值: ,其中x=2017.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=21,BC=20,有一个半径为10的圆分别与AB、BC相切,则此圆的圆心是(
A.AB边的中垂线与BC中垂线的交点
B.∠B的平分线与AB的交点
C.∠B的平分线与AB中垂线的交点
D.∠B的平分线与BC中垂线的交点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线L:y=ax2+2(a﹣1)x﹣4(常数a>0)经过点A(﹣2,0)和点B(0,﹣4),与x轴的正半轴交于点E,过点B作BC⊥y轴,交L于点C,以OB,BC为边作矩形OBCD.

(1)当x=2时,L取得最低点,求L的解析式.
(2)用含a的代数式分别表示点C和点E的坐标;
(3)当S矩形OBCD=4时,求a的值.
(4)如图2,作射线AB,OC,当AB∥OC时,将矩形OBCD从点O沿射线OC方向平移,平移后对应的矩形记作O′B′C′D′,直接写出点A到直线BD′的最大距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,DE⊥AB,垂足为点F,且AB=DE.

(1)求证:BD=BC;
(2)若BD=6cm,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是

查看答案和解析>>

同步练习册答案