【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.
(1)求此抛物线的解析式.
(2)求点N的坐标.
(3)过点A的直线与抛物线交于点F,当tan∠FAC=时,求点F的坐标.
(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t≤),请直接写出S与t的函数关系式.
【答案】(1)y=﹣x2+x+2;(2)点N的坐标为(5,-3);(3)点F的坐标为:(3,2)或(,﹣);(4).
【解析】
(1)点A、C的坐标分别为(0,2)、(4,0),将点A、C坐标代入抛物线表达式即可求解;
(2)抛物线的对称轴为:x=,点N的横坐标为:,即可求解;
(3)分点F在直线AC下方、点F在直线AC的上方两种情况,分别求解即可;
(4)分0≤t≤、当<t≤、<t≤三种情况,分别求解即可.
解:(1)直线y=﹣x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),
则c=2,抛物线表达式为:y=﹣x2+bx+2,
将点C坐标代入上式并解得:b=,
故抛物线的表达式为:y=﹣x2+x+2…①;
(2)抛物线的对称轴为:x=,
点N的横坐标为: ,
故点N的坐标为(5,-3);
(3)∵tan∠ACO==tan∠FAC=,
即∠ACO=∠FAC,
①当点F在直线AC下方时,
设直线AF交x轴于点R,
∵∠ACO=∠FAC,则AR=CR,
设点R(r,0),则r2+4=(r﹣4)2,解得:r=,
即点R的坐标为:(,0),
将点R、A的坐标代入一次函数表达式:y=mx+n得:,
解得:,
故直线AR的表达式为:y=﹣x+2…②,
联立①②并解得:x=,故点F(,﹣);
②当点F在直线AC的上方时,
∵∠ACO=∠F′AC,∴AF′∥x轴,
则点F′(3,2);
综上,点F的坐标为:(3,2)或(,﹣);
(4)如图2,设∠ACO=α,则tanα=,则sinα=,cosα=;
①当0≤t≤时(左侧图),
设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,
则∠DST=∠ACO=α,过点T作TL⊥KH,
则LT=HH′=t,∠LTD=∠ACO=α,
则DT=,DS=,
S=S△DST=DT×DS=;
②当<t≤时(右侧图),
同理可得:
S==DG×(GS′+DT′)=3+(+﹣)=;
③当<t≤时,同理可得S=;
综上,S=.
科目:初中数学 来源: 题型:
【题目】小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:
①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
你认为其中正确信息的个数有
A.2个 B.3个 C.4个 D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形中,BC=3,动点从出发,以每秒1个单位的速度,沿射线方向移动,作关于直线的对称,设点的运动时间为
(1)若
①如图2,当点B’落在AC上时,显然△PCB’是直角三角形,求此时t的值
②是否存在异于图2的时刻,使得△PCB’是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由
(2)当P点不与C点重合时,若直线PB’与直线CD相交于点M,且当t<3时存在某一时刻有结论∠PAM=45°成立,试探究:对于t>3的任意时刻,结论∠PAM=45°是否总是成立?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=80°,∠BAC=40°.
(1)尺规作图作出AB的垂直平分线DE,分别与AC、AB交于点D、E.并连结BD;(保留作图痕迹,不写作法)
(2)证明:△ABC∽△BDC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=(x>0)的图象与直线y=mx交于点C,直线l:y=4分别交两函数图象于点A(1,4)和点B,过点B作BD⊥l交反比例函数图象于点 D.
(1)求反比例函数的解析式;
(2)当BD=2AB时,求点B的坐标;
(3)在(2)的条件下,直接写出不等式>mx的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了解九年级的600名学生每天的自主学习情况,随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两副不完整的统计图(图1图2),请根据统计图中的信息回答下列问题:
(1)本次调查的学生人数是 人;
(2)图2中角是 度;
(3)将图1条形统计图补充完整;
(4)估算该校九年级学生自主学习不少于1.5小时有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差.根据表中数据,要从中选择一名成绩好且发挥稳定的同学参加数学竞赛,应该选择__________(填“甲”, “乙”, “丙”, “丁”).
甲 | 乙 | 丙 | 丁 | |
平均数(分) | 92 | 95 | 95 | 92 |
方差 | 3.6 | 3.6 | 7.4 | 8.1 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC′沿BD翻折,得到△,DC与AB交于点E,连结,若AD=AC′=2,BD=3则点D到BC的距离为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com