精英家教网 > 初中数学 > 题目详情

【题目】问题提出

(1)如图①,在矩形ABCD中,AB=2AD,ECD的中点,则∠AEB   ACB(填“>”“<”“=”);

问题探究

(2)如图②,在正方形ABCD中,PCD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;

问题解决

(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.

【答案】(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)4米.

【解析】

(1)过点EEFAB于点F,由矩形的性质和等腰三角形的判定得到:AEF是等腰直角三角形,易证AEB=90°,而ACB<90°,由此可以比较AEBACB的大小

(2)假设PCD的中点,作APB的外接圆O,则此时CDOP,在CD上取任意异于P点的点E,连接AE,与O交于点F,连接BEBF;由AFBEFB的外角,得AFB>∠AEB,且AFBAPB均为⊙O中弧AB所对的角,则AFB=∠APB,即可判断APBAEB的大小关系,即可得点P位于何处时,APB最大;

(3)过点ECEDF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则OCE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.

解:(1)∠AEB>∠ACB,理由如下:

如图1,过点E作EF⊥AB于点F,

∵在矩形ABCD中,AB=2AD,E为CD中点,

∴四边形ADEF是正方形,

∴∠AEF=45°,

同理,∠BEF=45°,

∴∠AEB=90°.

而在直角△ABC中,∠ABC=90°,

∴∠ACB<90°,

∴∠AEB>∠ACB.

故答案为:>;

(2)当点P位于CD的中点时,∠APB最大,理由如下:

假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,

在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,

∵∠AFB是△EFB的外角,

∴∠AFB>∠AEB,

∵∠AFB=∠APB,

∴∠APB>∠AEB,

故点P位于CD的中点时,∠APB最大:

(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,

以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,

由题意知DP=OQ=

∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,

BD=11.6米, AB=3米,CD=EF=1.6米,

∴OA=11.6+3﹣1.6=13米,

∴DP=米,

即小刚与大楼AD之间的距离为4米时看广告牌效果最好.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DEBC上的点,AD平分∠BAECA=CD

1)求证:∠CAE=∠B

2)若∠B50°,∠C3DAB,求∠C的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点(3,-2)在反比例函数y=的图象上,则下列点也在该反比例函数y=的图象的是(  )

A. (3,-3) B. (1,6) C. (-2,3) D. (-2,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察发现:如图(1),⊙O△ADC的外接圆,点B是边CD上的一点,且△ABC是等边三角形.ODAB交于点E,以O为圆心、OE为半径的圆交AB于点F,连接CF、OF.

(1)∠AOD的度数

(2)线段AE、CF有何大小关系?证明你的猜想.

拓展应用:如图(2),△HJI是等边三角形,点KIH延长线上的一点.点O△JKI的外接圆圆心,OKJH相交于点E.如果等边三角形△JHI的边长为2,请直接写出JE的最小值和此时∠JEO的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.

租车公司:按日收取固定租金80元,另外再按租车时间计费.

共享汽车:无固定租金,直接以租车时间(时)计费.

如图是两种租车方式所需费用y1元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:

(1)分别求出y1、y2x的函数表达式;

(2)请你帮助小丽一家选择合算的租车方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AC是直径,点EAB的中点,延长EO交⊙OD点,若BC=DC,AB=2 ,求 的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线BC与半径为6的⊙O相切于点B,点M是圆上的动点,过点MMCBC,垂足为C,MC与⊙O交于点D,AB为⊙O的直径,连接MA、MB,设MC的长为x,(6<x<12).

(1)x=9时,求BM的长和△ABM的面积;

(2)是否存在点M,使MDDC=20?若存在,请求出x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不能得出BEDF的是(  )

A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB是一钢架,∠AOB15°,为使钢架更加牢固,需在其内部添加一些钢管EFFGGH,添的钢管长度都与OE相等,则最多能添加这样的钢管_____根.

查看答案和解析>>

同步练习册答案