【题目】如图,已知二次函数的图形经过点,且与轴交点的横坐标分别为,,其中,,下列结论:①;②;③;④.其中正确结论的序号是________.
【答案】①②
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴的右侧,a,b异号,b>0,判断①;根据对称轴小于1,判断②;根据顶点的纵坐标大于2判断③,根据图象经过(1,2)判断④.
∵抛物线的开口向下,∴a<0,
∵抛物线与y轴的正半轴相交,∴c>0,
∵对称轴在y轴的右侧,a,b异号,∴b>0,
∴①abc<0,正确;
∵-<1,
∴b<-2a,
∴②a<b<-2a正确;
由于抛物线的顶点纵坐标大于2,即:>2,
由于a<0,所以4ac-b2<8a,即b2+8a>4ac,故③错误,
由题意知,a+b+c=2,(1)
a-b+c<0,(2)
4a+2b+c<0,(3)
把(1)代入(3)得到:4a+b+2-a<0,
则a<.
由(1)代入(2)得到:b>1.
则a<-1.故④错误.
综上所述,正确的结论是①②.
故答案为①②.
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的图象如图所示,其对称轴为直线x=1,有如下结论:
①c<1;
②2a+b=0;
③b2<4ac;
④若方程ax2+bx+c=0的两根为x1,x2,则x1+x2=2.
其中正确的结论是( )
A. ①② B. ①③ C. ②④ D. ③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的两条对角线相交于O,且AC平分∠DAB.
(1)求证:四边形ABCD是菱形;
(2)若AC=8,BD=6,试求点O到AB的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践:
我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等.
(1)请你用所学知识判断乐乐说法的正确性.
如图,已知、均为锐角三角形,且,,.
求证:.
(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,点为的中点,,分别在,上,且现有以下四个结论:
①;②;③四边形的面积为4;
④的面积最大为3.其中正确的结论有( )
A.①②④B.①②③C.②③④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为的正方形的顶点、在一个半径为的圆上,顶点、在圆内,将正方形沿圆的内壁逆时针方向作无滑动的滚动.当点第一次落在圆上时,点运动的路径长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.
(1)篮球和足球的单价各是多少元?
(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.
(1)求∠ECF的度数;
(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB,以O为圆心,以任意长为半径作弧,分别交OA,OB于F,E两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线OP,过点F作FD∥OB交OP于点D.
(1)若∠OFD=116°,求∠DOB的度数;
(2)若FM⊥OD,垂足为M,求证:△FMO≌△FMD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com