精英家教网 > 初中数学 > 题目详情

【题目】计算
(1)计算:π0+21 ﹣|﹣ |;
(2) ,其中x=4,y=﹣2.

【答案】
(1)解:原式=1+

=1﹣

=


(2)解:原式=

当x=4,y=﹣2时,

原式=


【解析】(1)分别根据0指数幂、负整数指数幂及绝对值的性质计算出各数,再根据有理数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x=4,y=﹣2代入进行计算即可.
【考点精析】掌握零指数幂法则和整数指数幂的运算性质是解答本题的根本,需要知道零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);aman=am+n(m、n是正整数);(amn=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,梯形AOBC的边OB在x轴的正半轴上,AC∥OB,BC⊥OB,过点A的双曲线y= 的一支在第一象限交梯形对角线OC于点D,交边BC于点E.

(1)填空:双曲线的另一支在第象限,k的取值范围是
(2)若点C的坐标为(2,2),当点E在什么位置时,阴影部分的面积S最小?
(3)若 = ,SOAC=2,求双曲线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简再求值

(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1);其中x=﹣3

(2)2a2﹣[ab﹣4a2)+8ab]﹣ab;其中a=1,b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①ABC中,AB=AC,点M、N分别是AB、AC上的点,且AM=AN.连接MN、CM、BN,点D、E、F、G分别是BC、MN、BN、CM的中点,连接E、F、D、G.

(l)判断四边形EFDG的形状是   (不必证明);

(2)现将AMN绕点A旋转一定的角度,其他条件不变(如图②),四边形EFDG的形状是否发生变化?证明你的结论;

(3)如图②,在(2)的情况下,请将ABC在原有的条件下添加一个条件,使四边形EFDG是正方形.请写出你添加的条件,并在添加条件的基础上证明四边形EFDG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

(1)-6x+2=2x-14;

(2)4y-3(20-y)=6y+7(y-1);

(3)=1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AEBD相交于点P,BFAE于点F.若BP=4,则PF的长(

A. 2 B. 3 C. 1 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列解题过程:

已知a,b,cABC的三边长,且满足a2c2-b2c2=a4-b4,试判断ABC的形状.

解:因为a2c2-b2c2=a4-b4

所以c2(a2-b2)=( a2-b2)( a2+b2).

所以c2= a2+b2

所以ABC是直角三角形.

回答下列问题:

(1)上述解题过程,从哪一步开始出现错误?请写出该步的代码为

(2)错误的原因为

(3)请你将正确的解答过程写下来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,E,G分别是BC,AC上的点,D,F是AB上的点,已知EF⊥AB,垂足为F,CD⊥AB,垂足为D,∠1=∠2, 试判断∠AGD和∠ACB是否相等,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AD是△ABC的角平分线,△ABC的一个外角的平分线AE交边BC的延长线于点E,且∠BAD=20°,∠E=30°,则∠B的度数为________

查看答案和解析>>

同步练习册答案