【题目】如图,直线y1=kx+2与反比例函数y2= 的图象交于点A(m,3),与坐标轴分别交于B,C两点.
(1)若y1>y2>0,求自变量x的取值范围;
(2)动点P(n,0)在x轴上运动,当n为何值时,|PA﹣PC|的值最大?并求最大值.
【答案】
(1)解:当y2= =3时,x=1,
∴点A的坐标为(1,3).
观察函数图象,可知:当x>1时,直线在双曲线上方,
∴若y1>y2>0,自变量x的取值范围为x>1.
(2)解:将A(1,3)代入y1=kx+2中,
3=k+2,解得:k=1,
∴直线AB的解析式为y1=x+2.
当x=0时,y1=x+2=2,
∴点C的坐标为(0,2),
∴AC= = .
当y1=x+2=0时,x=﹣2,
∴点B的坐标为(﹣2,0).
当点P于点B重合时,|PA﹣PC|的值最大,此时n=﹣2,|PA﹣PC|=AC= .
∴当n为﹣2时,|PA﹣PC|的值最大,最大值为 .
【解析】(1)把点A(m,3),代入反比例函数的解析式,求出m的值,观察函数图象,可知当x>1时,直线在双曲线上方,求出自变量x的取值范围即可;(2)将A(1,3)代入直线解析式,求出直线AB的解析式,得到点C的坐标,根据两点间的距离求出AC的值,得到点B的坐标,求出|PA﹣PC|的最大值.
科目:初中数学 来源: 题型:
【题目】下列结沦中,错误的有( )
①Rt△ABC中,已知两边分别为3和4,则第三边的长为5;②三角形的三边分别为a、b、c,若a2+b2=c2,则∠A=90°;③若△ABC中,∠A:∠B:∠C=1:5:6,则这个三角形是一个直角三角形;④若(x﹣y)2+M=(x+y)2成立,则M=4xy.
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l:y =x,过点A(0,1)作y轴的垂线交直线于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2019的坐标为( )
A. (0,42019) B. (0,42018) C. (0,32019) D. (0,32018)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,对角线AC,BD相交于点O,且OB=OD.点E在线段OA上,连结BE,DE.给出下列条件:①OC=OE;②AB=AD;③BC⊥CD;④∠CBD=∠EBD.请你从中选择两个条件,使四边形BCDE是菱形,并给予证明.你选择的条件是:(只填写序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作与探究
综合实践课,老师把一个足够大的等腰直角三角尺AMN靠在一个正方形纸片ABCD的一侧,使边AM与AD在同
一直线上(如图1),其中∠AMN=90°,AM=MN.
(1)猜想发现
老师将三角尺AMN绕点A逆时针旋转α.如图2,当0<α<45°时,边AM,AN分别与直线BC,CD交于点E,F,连结EF.小明同学探究发现,线段EF,BE,DF满足EF=BE﹣DF;如图3,当45°<α<90°时,其它条件不变.
①填空:∠DAF+∠BAE=度;
②猜想:线段EF,BE,DF三者之间的数量关系是: .
(2)证明你的猜想;
(3)拓展探究
在45°<α<90°的情形下,连结BD,分别交AM,AN于点G,H,如图4连结EH,试证明:EH⊥AN.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC是等边三角形,在直线AC、直线BC上分别取点D和点且AD=CE,直线BD、AE相交于点F.
(1)如图1所示,当点D、点E分别在线段CA、BC上时,求证:BD=AE;
(2)如图2所示,当点D、点E分别在CA、BC的延长线时,求∠BFE的度数;
(3)如图3所示,在(2)的条件下,过点C作CM∥BD,交EF于点M,若DF:AF:AM=1:2:4,BC=12,求CE的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com