·ÖÎö £¨¢ñ£©Ö»Ðè°ÑA¡¢CÁ½µãµÄ×ø±ê´úÈëy=$\frac{1}{2}$x2+mx+n£¬¾Í¿ÉµÃµ½Å×ÎïÏߵĽâÎöʽ£¬È»ºóÇó³öÖ±ÏßABÓëÅ×ÎïÏߵĽ»µãBµÄ×ø±ê£¬¹ýµãB×÷BH¡ÍxÖáÓÚH£¬Èçͼ1£®Ò׵áÏBCH=¡ÏACO=45¡ã£¬BC=$\sqrt{2}$£¬AC=3$\sqrt{2}$£¬´Ó¶øµÃµ½¡ÏACB=90¡ã£¬È»ºó¸ù¾ÝÈý½Çº¯ÊýµÄ¶¨Òå¾Í¿ÉÇó³ötan¡ÏBACµÄÖµ£»
£¨¢ò£©¹ýµãP×÷PG¡ÍyÖáÓÚG£¬Ôò¡ÏPGA=90¡ã£®ÉèµãPµÄºá×ø±êΪx£¬ÓÉPÔÚyÖáÓÒ²à¿ÉµÃx£¾0£¬ÔòPG=x£¬Ò׵áÏAPQ=¡ÏACB=90¡ã£®ÈôµãGÔÚµãAµÄÏ·½£¬¢Ùµ±¡ÏPAQ=¡ÏCABʱ£¬¡÷PAQ¡×¡÷CAB£®´Ëʱ¿ÉÖ¤µÃ¡÷PGA¡×¡÷BCA£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʿɵÃAG=3PG=3x£®ÔòÓÐP£¨x£¬3-3x£©£¬È»ºó°ÑP£¨x£¬3-3x£©´úÈëÅ×ÎïÏߵĽâÎöʽ£¬¾Í¿ÉÇó³öµãPµÄ×ø±ê¢Úµ±¡ÏPAQ=¡ÏCBAʱ£¬¡÷PAQ¡×¡÷CBA£¬Í¬Àí£¬¿ÉÇó³öµãPµÄ×ø±ê£»ÈôµãGÔÚµãAµÄÉÏ·½£¬Í¬Àí£¬¿ÉÇó³öµãPµÄ×ø±ê£»
½â´ð
½â£º£¨¢ñ£©°ÑA£¨0£¬3£©£¬C£¨3£¬0£©´úÈëy=$\frac{1}{2}$x2+mx+n£¬µÃ
$\left\{\begin{array}{l}{n=3}\\{\frac{1}{2}¡Á9+mx+n=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{m=-\frac{5}{2}}\\{n=3}\end{array}\right.$£®
¡àÅ×ÎïÏߵĽâÎöʽΪy=$\frac{1}{2}$x2-$\frac{5}{2}$x+3£®
ÁªÁ¢$\left\{\begin{array}{l}{y=-\frac{1}{2}x+3}\\{y=\frac{1}{2}{x}^{2}-\frac{5}{2}x+3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$£¬
¡àµãBµÄ×ø±êΪ£¨4£¬1£©£®
¹ýµãB×÷BH¡ÍxÖáÓÚH£¬Èçͼ1£®¡ßC£¨3£¬0£©£¬B£¨4£¬1£©£¬
¡àBH=1£¬OC=3£¬OH=4£¬CH=4-3=1£¬¡àBH=CH=1£®
¡ß¡ÏBHC=90¡ã£¬¡à¡ÏBCH=45¡ã£¬BC=$\sqrt{2}$£®
ͬÀí£º¡ÏACO=45¡ã£¬AC=3$\sqrt{2}$£¬![]()
¡à¡ÏACB=180¡ã-45¡ã-45¡ã=90¡ã£¬
¡àtan¡ÏBAC=$\frac{BC}{AC}$=$\frac{\sqrt{2}}{3\sqrt{2}}$=$\frac{1}{3}$£»
£¨¢ò£©£¨1£©´æÔÚµãP£¬Ê¹µÃÒÔA£¬P£¬QΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷ACBÏàËÆ£®
¹ýµãP×÷PG¡ÍyÖáÓÚG£¬Ôò¡ÏPGA=90¡ã£®
ÉèµãPµÄºá×ø±êΪx£¬ÓÉPÔÚyÖáÓÒ²à¿ÉµÃx£¾0£¬ÔòPG=x£®
¡ßPQ¡ÍPA£¬¡ÏACB=90¡ã£¬¡à¡ÏAPQ=¡ÏACB=90¡ã£®
ÈôµãGÔÚµãAµÄÏ·½£¬
¢ÙÈçͼ2¢Ù£¬µ±¡ÏPAQ=¡ÏCABʱ£¬Ôò¡÷PAQ¡×¡÷CAB£®
¡ß¡ÏPGA=¡ÏACB=90¡ã£¬¡ÏPAQ=¡ÏCAB£¬¡à¡÷PGA¡×¡÷BCA£¬
¡à$\frac{PG}{AG}$=$\frac{BC}{AC}$=$\frac{1}{3}$£®
¡àAG=3PG=3x£®
ÔòP£¨x£¬3-3x£©£®°ÑP£¨x£¬3-3x£©´úÈëy=$\frac{1}{2}$x2-$\frac{5}{2}$x+3£¬µÃ£º$\frac{1}{2}$x2-$\frac{5}{2}$x+3=3-3x£¬
ÕûÀíµÃ£ºx2+x=0£¬½âµÃ£ºx1=0£¨ÉáÈ¥£©£¬x2=-1£¨ÉáÈ¥£©£®
¢ÚÈçͼ2¢Ú£¬µ±¡ÏPAQ=¡ÏCBAʱ£¬Ôò¡÷PAQ¡×¡÷CBA£®
ͬÀí¿ÉµÃ£ºAG=$\frac{1}{3}$PG=$\frac{1}{3}$x£¬ÔòP£¨x£¬3-$\frac{1}{3}$x£©£¬
°ÑP£¨x£¬3-$\frac{1}{3}$x£©´úÈëy=$\frac{1}{2}$x2-$\frac{5}{2}$x+3£¬µÃ£º$\frac{1}{2}$x2-$\frac{5}{2}$x+3=3-$\frac{1}{3}$x£¬
ÕûÀíµÃ£ºx2-$\frac{13}{3}$x=0£¬½âµÃ£ºx1=0£¨ÉáÈ¥£©£¬x2=$\frac{13}{3}$£¬¡àP£¨$\frac{13}{3}$£¬$\frac{14}{9}$£©£»
ÈôµãGÔÚµãAµÄÉÏ·½£¬
¢Ùµ±¡ÏPAQ=¡ÏCABʱ£¬Ôò¡÷PAQ¡×¡÷CAB£¬
ͬÀí¿ÉµÃ£ºµãPµÄ×ø±êΪ£¨11£¬36£©£®![]()
¢Úµ±¡ÏPAQ=¡ÏCBAʱ£¬Ôò¡÷PAQ¡×¡÷CBA£®
ͬÀí¿ÉµÃ£ºµãPµÄ×ø±êΪP£¨$\frac{17}{3}$£¬$\frac{44}{9}$£©£®
×ÛÉÏËùÊö£ºÂú×ãÌõ¼þµÄµãPµÄ×ø±êΪ£¨11£¬36£©¡¢£¨$\frac{13}{3}$£¬$\frac{14}{9}$£©¡¢£¨$\frac{17}{3}$£¬$\frac{44}{9}$£©£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÔËÓôý¶¨ÏµÊý·¨ÇóÅ×ÎïÏߵĽâÎöʽ¡¢ÇóÖ±ÏßÓëÅ×ÎïÏߵĽ»µã×ø±ê¡¢Å×ÎïÏßÉϵãµÄ×ø±êÌØÕ÷¡¢Èý½Çº¯ÊýµÄ¶¨Òå¡¢ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢½âÒ»Ôª¶þ´Î·½³Ì¡¢Á½µãÖ®¼äÏß¶Î×î¶Ì¡¢Öá¶Ô³ÆµÄÐÔÖÊ¡¢¾ØÐεÄÅж¨ÓëÐÔÖÊ¡¢¹´¹É¶¨ÀíµÈ֪ʶ£¬×ÛºÏÐÔÇ¿£¬ÄѶȴó£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3 | B£® | $2\sqrt{2}$ | C£® | $\sqrt{10}$ | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com