精英家教网 > 初中数学 > 题目详情
8.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是(  )
A.3B.$2\sqrt{2}$C.$\sqrt{10}$D.4

分析 根据勾股定理求得OD=$\sqrt{10}$,然后根据矩形的性质得出CE=OD=$\sqrt{10}$.

解答 解:∵四边形COED是矩形,
∴CE=OD,
∵点D的坐标是(1,3),
∴OD=$\sqrt{{1}^{2}+{3}^{2}}$=$\sqrt{10}$,
∴CE=$\sqrt{10}$,
故选C.

点评 本题考查了矩形的性质以及勾股定理的应用,熟练掌握矩形的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.2015年某市中考招生政策发生较大改变,其中之一是:省级示范性高中批次志愿中,每个考生可填报两所学校(有先后顺序),我市某区域的初三毕业生可填报的省级示范性高中有A、B、C、D、E五所.
(1)请列举出该区域学生填报省级示范性高中批次志愿的所有可能结果;
(2)求填报方案中含有A学校的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在等腰三角形ABC的腰AC上取一点D,腰AB的延长线上取一点E,使CD=BE,交BC于M,探索能得到的结论,并证明.
解:结论是DM=EM.
证明:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)求出AB的长度;
(2)用含有t的式子表示AP和BQ;
(3)当t为何值时,△APQ与△AOB相似?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,抛物线y=$\frac{1}{2}$x2+mx+n与直线y=-$\frac{1}{2}$x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).
(Ⅰ)求抛物线的解析式和tan∠BAC的值;
(Ⅱ)在(Ⅰ)条件下,P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图1,二次函数y=ax2+bx+6(a≠0)的图象交y轴于C点,交x轴于A,B两点(点A在点B的左侧),tan∠CAB=3,tan∠CBA=1,
(1)求出点A、点B的坐标及该二次函数表达式.
(2)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q不与点O、B重合),过点Q作QD∥AC交于BC点D,设Q点坐标(m,0),当m为何值时,△CDQ面积S最大,并求出最大值.
(3)如图3,线段MN是直线y=x上的动线段(点M在点N左侧),且MN=$\sqrt{2}$,若M点的横坐标为n,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出n的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系中,点A(0,b),点B(a,0),点D(d,0),其中a、b、d满足$\sqrt{a+1}$+|b-3|+(2-d)2=0,DE⊥x轴,且∠BED=∠ABO,直线AE交x轴于点C.
(1)求A、B、D三点的坐标;
(2)求直线AE的解析式;
(3)若以AB为一边在第二象限内构造等腰直角△ABF,请直接写出点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,等腰△ABC中,AB=AC,∠C=65°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是15°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.化简
(1)5(a2b-3ab2)-2(a2b-7ab2);
(2)4x2-[3x-2(x-3)+2(x2-1)].

查看答案和解析>>

同步练习册答案