精英家教网 > 初中数学 > 题目详情

【题目】如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.

(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);
(2)如图2,若点E在线段BC上滑动(不与点B,C重合).
①AE=EF是否总成立?请给出证明;
②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.

【答案】
(1)解:如图1,取AB的中点G,连接EG.

△AGE与△ECF全等.


(2)解:①若点E在线段BC上滑动时AE=EF总成立.

证明:如图2,在AB上截取AM=EC.

∵AB=BC,

∴BM=BE,

∴△MBE是等腰直角三角形,

∴∠AME=180°﹣45°=135°,

又∵CF平分正方形的外角,

∴∠ECF=135°,

∴∠AME=∠ECF.

而∠BAE+∠AEB=∠CEF+∠AEB=90°,

∴∠BAE=∠CEF,

∴△AME≌△ECF.

∴AE=EF.

②过点F作FH⊥x轴于H,

由①知,FH=BE=CH,

设BH=a,则FH=a﹣1,

∴点F的坐标为F(a,a﹣1)

∵点F恰好落在抛物线y=﹣x2+x+1上,

∴a﹣1=﹣a2+a+1,

∴a2=2,a=± (负值不合题意,舍去),

∴点F的坐标为


【解析】(1)取AB的中点G,连接EG,再由已知条件利用ASA能得到△AGE与△ECF全等;
(2)①在AB上截取AM=EC,证得△AME≌△ECF即可证得AE=EF;②过点F作FH⊥x轴于H,根据FH=BE=CH设BH=a,则FH=a-1,然后表示出点F的坐标,根据点F恰好落在抛物线y=-x2+x+1上得到有关a的方程求得a值即可求得所求结论.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图甲,在平面直角坐标系中,直线分别交x轴、y轴于点A、B,⊙O的半径为2 个单位长度,点P为直线y=﹣x+8上的动点,过点P作⊙O的切线PC、PD,切点分别为C、D,且PC⊥PD.
(1)试说明四边形OCPD的形状(要有证明过程);
(2)求点P的坐标
(3)若直线y=﹣x+8沿x轴向左平移得到一条新的直线y1=﹣x+b,此直线将⊙O的圆周分得两段弧长之比为1:3,请直接写出b的值;
(4)若将⊙O沿x轴向右平移(圆心O始终保持在x轴上),试写出当⊙O与直线y=﹣x+8有交点时圆心O的横坐标m的取值范围.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分为四类(A.特别好,B.好,C.一般,D.较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:

(1)本次调查中,王老师一共调查了名学生;
(2)将两幅统计图中不完整的部分补充完整;
(3)假定全校各班实施新课程改革效果一样,全校共有学生2 400人,请估计该校新课程改革效果达到A类的有多少学生;
(4)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校要从甲、乙两个跳远运动员中选一人参加一项比赛,在最近的10次选拨赛中,他们的成绩单位:如下:

甲:585,596,610,598,612,597,604,600,613,601

乙:613,618,580,574,618,593,585,590,598,624

分别求甲、乙的平均成绩;

分别求甲、乙这十次成绩的方差;

这两名运动员的运动成绩各有什么特点?历届比赛成绩表明,成绩达到就很可能夺冠你认为应选谁参加比赛?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,点 D,E 分别在边 AC,AB 上,BD CE 交于点 O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.

(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)

(2)请选择(1)中的一种情形,写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a、b、c、d.若|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,则|b﹣c|=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市开展一项自行车旅游活动,线路需经A,B,C,D四地,如图,其中A,B,C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向,C地在A地北偏东75°方向.且BC=CD=20km,问沿上述线路从A地到D地的路程大约是多少?(最后结果保留整数,参考数据:sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,双曲线y= 经过Rt△BOC斜边上的点A,且满足 = ,与BC交于点D,SBOD=21,求k=

查看答案和解析>>

同步练习册答案