【题目】某市开展一项自行车旅游活动,线路需经A,B,C,D四地,如图,其中A,B,C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向,C地在A地北偏东75°方向.且BC=CD=20km,问沿上述线路从A地到D地的路程大约是多少?(最后结果保留整数,参考数据:sin15°≈0.25,cos15°≈0.97,tan15°≈0.27, )
【答案】解:由题意可知∠DCA=180°﹣75°﹣45°=60°,
∵BC=CD,
∴△BCD是等边三角形.
过点B作BE⊥AD,垂足为E,如图所示:
由题意可知∠DAC=75°﹣30°=45°,
∵△BCD是等边三角形,
∴∠DBC=60° BD=BC=CD=20km,
∴∠ADB=∠DBC﹣∠DAC=15°,
∴BE=sin15°BD≈0.25×20≈5m,
∴AB= = ≈7m,
∴AB+BC+CD≈7+20+20≈47m.
答:从A地跑到D地的路程约为47m.
【解析】解直角三角形的基本方法是把已知角放在直角三角形中,因此需过B作垂线构造直角三角形,由三角函数可求出BE,再由BE求出AB, 进而求出整个路程.
科目:初中数学 来源: 题型:
【题目】如图已知直线BC//ED.
(1)若点A在直线DE上,且∠B=44°,∠EAC=30°,求∠BAC的度数;
(2)若点G在BC的延长线上,求证:∠ACG =∠BAC+∠B.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.
(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);
(2)如图2,若点E在线段BC上滑动(不与点B,C重合).
①AE=EF是否总成立?请给出证明;
②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
品名 | 猕猴桃 | 芒果 |
批发价元千克 | 20 | 40 |
零售价元千克 | 26 | 50 |
他购进的猕猴桃和芒果各多少千克?
如果猕猴桃和芒果全部卖完,他能赚多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:总利润单件利润销售量
商品价格 | A | B |
进价元件 | 1200 | 1000 |
售价元件 | 1350 | 1200 |
(1)该商场第1次购进A、B两种商品各多少件?
(2)商场第2次以原进价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原售价销售,而B商品按原售价打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解并解答:
为了求1+2+22+23+24+…+22009的值.
可令S=1+2+22+23+24+…+22009
则2S=2+22+23+24+…+22009+22010
因此2S﹣S=(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1
所以S=22010﹣1即1+2+22+23+24+…+22009=22010﹣1
请依照此法,求:1+5+52+53+54+…+52020的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小敏思考解决如下问题:
原题:如图1,四边形ABCD中,,点P,Q分别在四边形ABCD的边BC,CD上,,求证:.
______;
小敏进行探索,如图2,将点P,Q的位置特殊化,使,,点E,F分别在边BC,CD上,此时她证明了请你证明此时结论;
受以上的启发,在原题中,添加辅助线:如图3,作,,垂足分别为E,F,请你继续完成原题的证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).
(1)求线段OA,OB的长和经过点A,B,C的抛物线的关系式.
(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.
①当△BDE是等腰三角形时,直接写出此时点E的坐标.
②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学阅读:
古希腊数学家海伦曾提出一个利用三角形三边之长求面积的公式:若一个三角形的三边长分别为a、b、c,则这个三角形的面积为,其中.这个公式称为“海伦公式”.
数学应用:
如图1,在△ABC中,已知AB=9,AC=8,BC=7.
(1)请运用海伦公式求△ABC的面积;
(2)设AB边上的高为,AC边上的高,求的值;
(3)如图2,AD、BE为△ABC的两条角平分线,它们的交点为I,求△ABI的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com