【题目】如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△PAB关于直线PA的对称△PAB' ,设点P的运动时间为t(s).
(1)若AB=2.
①如图2,当点B' 落在AC上时,求t的值;
②是否存在异于图2的时刻,使得△PCB’是直角三角形?若存在,请直接写出所有符合题意的t值?若不存在,请说明理由.
(2)若四边形ABCD是正方形,直线PB'与直线CD相交于点M,当点P不与点C重合时,求证:∠PAM=45°.
【答案】(1)①t=2-4;②存在,t=2;t=6;t=2;(2)详见解析
【解析】
(1)①利用勾股定理求出AC,由△PCB′∽△ACB,推出即可解决问题.
②分三种情形分别求解即可:如图2-1中,当∠PCB′=90°时.如图2-2中,当∠PCB′=90°时.如图2-3中,当∠CPB′=90°时.
(2)如图3-1中,当t<3时,由四边形ABCD是正方形,证明△MDA≌△MB’A,即可得到结论,如图3-2中,当t>3时,设∠APB=x,利用全等三角形的性质,翻折不变性即可解决问题.
解:(1)①如图1中,
∵四边形ABCD是矩形,
∴∠ABC=90°, ∴
∵∠PCB′=∠ACB,∠PB′C=∠ABC=90°,
∴△PCB′∽△ACB,
∴
∴
∴
∴
②如图2-1中,当∠PCB′=90°时,
∵四边形ABCD是矩形, ∴∠D=90°,AB=CD= AD=BC=3,
∴
∴
在Rt△PCB′中,∵
∴
∴
如图2-2中,当∠PCB′=90°时,
在Rt△ADB′中,,
在Rt△PCB′中则有:
解得t=6.
如图2-3中,当∠CPB′=90°时,则
则四边形为正方形,
综上所述,满足条件的t的值为2s或6s或s.
(2)如图3-1,当t<3时,
又∵翻折,
∴∠1=∠2,AB=AB’,∠B=∠AB’P
∵四边形ABCD是正方形,
∴AD=AB=AB’ ,∠D=∠B=∠AB’P= 90°
∵AM=AM
∴△MDA≌△MB’A(HL)
∴∠3=∠4
∴∠2+∠3=45°,
即∠PAM=45°
(图3-1)
如图3-2,当t>3时,设∠APB=x
∴∠PAB=90°-x
∴∠DAP=x
同理:△MDA≌△MB’A(HL)
∴∠B’AM=∠DAM
∵翻折
∴∠PAB=∠PAB’=90°-x
∴∠DAB’=∠PAB’-∠DAP=90°-2x
∴∠DAM=∠DAB’=45°-x
∴∠MAP=∠DAM+∠PAD=45°
(图3-2)
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,与轴交于点(点与点不重合),抛物线经过点,抛物线的顶点为.
(1) °;
(2)求的值;
(3)在抛物线上是否存在点,能够使?如果存在,请求出点的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,A、B为两个村庄,AB、BC、CD为公路,BD为地,AD为河宽,且CD与AD互相垂直.现在要从E处开始铺设通往村庄A、村庄B的一电缆,共有如下两种铺设方案:
方案一:; 方案二:.
经测量得AB=4千米,BC=10千米,CE=6千米,∠BDC=45°,∠ABD=15°.已知:地下电缆的修建费为2万元/千米,水下电缆的修建费为4万元/千米.
(1)求出河宽AD(结果保留根号);
(2)求出公路CD的长;
(3)哪种方案铺设电缆的费用低?请说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.
(1)求证:△ADE≌△CBF
(2)当AD⊥BD时,请你判断四边形BFDE的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.
①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
②A、B两班学生测试成绩在80≤x<90这一组的数据如下:
A班:80 80 82 83 85 85 86 87 87 87 88 89 89
B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
③A、B两班学生测试成绩的平均数、中位数、方差如下:
平均数 | 中位数 | 方差 | |
A班 | 80.6 | m | 96.9 |
B班 | 80.8 | n | 153.3 |
根据以上信息,回答下列问题:
(1)补全数学成绩频数分布直方图;
(2)写出表中m、n的值;
(3)请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.
根据以上信息,解答下列问题:
(1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;
(2)请将条形统计图补充完整;
(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是,类似地,图2所示的算筹图我们可以表述为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境
在综合实践课上,同学们以“正方形和直线的旋转”为主题分组开展数学探究活动,已知正方形ABCD,直线PQ经过点A,并绕点A旋转,作点B关于直线PQ的对称点E,直线DE交直线PQ于点F,连结AE,BE.
操作发现
(1)如图1,设∠PAB=25°则∠ADF= °.
(2)“梦想小组”的同学们发现,∠BEF的度数是一个定值,这个值为 .
(3)“创新小组”的同学们发现,线段AB、DF、EF之间存在特殊的数量关系,请写出这一关系式,并说明理由:
拓展应用
(4)如图2,当直线PQ在正方形ABCD的外部时,“进取小组”的同学们发现(3)的结论仍然成立,并提出新问题;若DF=3,EF=4,直接写出正方形ABCD的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,抛物线y=﹣2x2+bx+c过A、B两点.
(1)求抛物线的解析式;
(2)如图1,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D,设其顶点为M,其对称轴交AB于点N.是否存在点P,使四边形MNPD为菱形?并说明理由;
(3)如图2,点E(0,1)在y轴上,连接AE,抛物线上是否存在一点F,使∠FEO与∠EAO互补,若存在,求点F的横坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com