【题目】问题情境
在综合实践课上,同学们以“正方形和直线的旋转”为主题分组开展数学探究活动,已知正方形ABCD,直线PQ经过点A,并绕点A旋转,作点B关于直线PQ的对称点E,直线DE交直线PQ于点F,连结AE,BE.
操作发现
(1)如图1,设∠PAB=25°则∠ADF= °.
(2)“梦想小组”的同学们发现,∠BEF的度数是一个定值,这个值为 .
(3)“创新小组”的同学们发现,线段AB、DF、EF之间存在特殊的数量关系,请写出这一关系式,并说明理由:
拓展应用
(4)如图2,当直线PQ在正方形ABCD的外部时,“进取小组”的同学们发现(3)的结论仍然成立,并提出新问题;若DF=3,EF=4,直接写出正方形ABCD的边长.
【答案】(1)70°;(2)45°;(3)EF2+DF2=2AB2,详见解析;(4)5
【解析】
(1)利用折叠得出∠BAP=∠EAP=25°,进而求出∠BAE=50°,即可得出结论;
(2)设∠BAP=α,先求出∠AED=45°+α,再求出∠AEB,即可得出结论;
(3)利用(2)判断出∠BFE=90°,即△BDF是直角三角形,利用勾股定理即可得出结论;
(4)先判断出∠AED=∠ABF,再判断出∠AED=∠ADE,即可得出∠BFD=90°,即可得出结论.
解:(1)∵∠PAB=25°,
由折叠知,∠PAB=∠EAP=25°,
∴∠BAE=50°,
∵四边形ABCD是正方形,
∴∠BAD=90°,
∴∠DAE=40°,
∴∠ADF=(180°﹣40°)=70°
(2)设∠BAP=α,
由折叠知,AE=AD,∠EAF=∠BAF=α,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴AD=AE,∠DAE=90°﹣∠BAE=90°﹣2α,
∴∠AED=(180°﹣∠DAE)=90°﹣∠DAE=90°﹣(90°﹣2α)=45°+α,
由折叠知,BE⊥AP,
∴∠AEB+∠EAF=90°,
∴∠AEB=90°﹣∠EAF=90°﹣α,
∴∠BEF=180°﹣∠AEB﹣∠AED=180°﹣(90°﹣α)﹣(45°+α)=45°,
故答案为:45°;
(3)EF2+DF2=2AB2;
理由:如图1,连接BF,
由折叠知,BF=EF,∠BEF=∠EBF,
由(2)知,∠BEF=45°,
∴∠BFE=90°,
连接BD,
∴△BDF是直角三角形,
∴BD2=BF2+DF2=EF2+DF2,
∵BD是正方形ABCD的对角线,
∴BD2=2AB2,
∴EF2+DF2=2AB2;
(4)如图2,连接BD,BF,
由折叠知,∠BEF=∠EBF,∠AEB=∠ABE,
∴∠AED=∠ABF,
由折叠知,EF=BF,AE=AB,
∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,
∴AE=AD,
∴∠AED=∠ADE,
∴∠ABF=∠ADE,
∵∠AOB=∠FOD,
∴∠BFD=∠BAD=90°
∴△BDF是直角三角形,
∴BD2=BF2+DF2=EF2+DF2,
∵BD是正方形ABCD的对角线,
∴BD2=2AB2,
∴EF2+DF2=2AB2,
∵DF=,EF=,
∴2AB2=32+18=50,
∴AB=5
即:正方形ABCD的边长为5.
科目:初中数学 来源: 题型:
【题目】小明与小亮玩游戏,如图,两组相同的纸牌,每组三张,牌面数字分别是3,4,5.他们将卡片背面朝上,分组充分洗匀后,从每组纸牌中各摸出一张,称为一次游戏.当摸出的两张纸牌的牌面数字之和大于8,则小明获胜;当摸出的两张纸牌的牌面数字之和小于8,则小亮获胜.
(1)请你用列表法或画树状图法求出小明获胜的概率;
(2)这个游戏公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△PAB关于直线PA的对称△PAB' ,设点P的运动时间为t(s).
(1)若AB=2.
①如图2,当点B' 落在AC上时,求t的值;
②是否存在异于图2的时刻,使得△PCB’是直角三角形?若存在,请直接写出所有符合题意的t值?若不存在,请说明理由.
(2)若四边形ABCD是正方形,直线PB'与直线CD相交于点M,当点P不与点C重合时,求证:∠PAM=45°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于点E,CF∥AE交AD延长线于点F.
(1)求证:四边形AECF是矩形;
(2)连接OE,若AE=12,AD=13,则线段OE的长度是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的方格中,△OAB的顶点坐标分别为O(0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1与△OAB是关于点P为位似中心的位似图形.
(1)在图中标出位似中心P的位置,并写出点P的坐标及△O1A1B1与△OAB的位似比;
(2)以原点O为位似中心,在y轴的左侧画出△OAB的另一个位似△OA2B2,使它与△OAB的位似比为2:1,并写出点B的对应点B2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数的图象经过点(,)和(,),完成下面问题:
(1)求函数的表达式;
(2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质;
(3)已知函数的图象如图所示,结合你所画出的图象,直接写出的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.
(1)按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)
(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com