【题目】如图,为⊙的直径,点在的延长线上,点在⊙上,且.
(1)求证:是⊙的切线;
(2)已知,,点是的中点,,垂足为,交于点,求的长.
【答案】(1)证明见解析;(2)EF=.
【解析】
(1)连接OC,由AB是直径,可得∠ACB=90°,再由OA=OC,可得∠CAO=∠ACO,证明△PBC∽△PCA,可得∠PCB=∠CAO,继而可得∠OCP=90°,由此即可得结论;
(2)连接OD,先求出PA=40,然后求出OA=15,由点是的中点,则可得∠FOD=90°,由△PBC∽△PCA,可得,证明△AEF∽△ACB,可得,即AE=2EF,证明△DOF∽△AEF,可得,从而求出OF=,进而求出AF=,在Rt△AEF中,利用勾股定理求出EF长即可.
(1)连接OC,
∵AB是直径,
∴∠ACB=90°,即∠ACO+∠OCB=90°,
∵OA=OC,
∴∠CAO=∠ACO,
∵,
∴,
又∵∠P=∠P,
∴△PBC∽△PCA,
∴∠PCB=∠CAO,
∴∠PCB+∠OCB=90°,即∠OCP=90°,
∴PC是⊙O的切线;
(2)连接OD,
∵,,,
∴PA=40,
∴AB=PA-PC=30,
∴OA=15,
∵点是的中点,AB是直径,
∴OD=OA=15,DO⊥AB,即∠FOD=90°,
∵△PBC∽△PCA,
∴,
∵∠AEF=∠ACB=90°,∠A=∠A,
∴△AEF∽△ACB,
∴,即AE=2EF,
∵∠AEF=∠DOF=90°,∠AFE=∠DFO,
∴△DOF∽△AEF,
∴,
∴OF=OD=,
∴AF=AO-OF=,
在Rt△AEF中,AF2=AE2+EF2,
即()2=(2EF)2+EF2,
∴EF=.
科目:初中数学 来源: 题型:
【题目】已知:如图,在等边△ABC中,AB=6cm,AD⊥BC于点D,动点F从点C出发,沿CB方向以1cm/s的速度向点D运动;同时,动点P也从点C出发,沿CA方向以3cm/s的速度向点A运动,过点P作PE∥BC,与边AB交于点E,与AD交于点G,连结ED,PF.设运动的时间为t(s)(0<t<2).
(1)当t为何值时,四边形EDFP为平行四边形?
(2)设四边形EDFP面积为y,求y与t之间的函数关系式;
(3)连结PD、EF,当t为何值时,PD⊥EF?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.
根据以上信息,解答下列问题:
(1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;
(2)请将条形统计图补充完整;
(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=ax2+bx+与x轴分别交于点A(﹣1,0),B(3,0),点C是顶点.
(1)求抛物线的解析式;
(2)如图1,线段DE是射线AC上的一条动线段(点D在点E的下方),且DE=2,点D从点A出发沿着射线AC的方向以每秒2个单位长度的速度运动,以DE为一边在AC上方作等腰Rt△DEF,其中∠EDF=90°,设运动时间为t秒.
①点D的坐标是 (用含t的代数式表示);
②当直线BC与△DEF有交点时,请求出t的取值范围;
(3)如图2,点P是△ABC内一动点,BP=,点M,N分别是AB,BC边上的两个动点,当△PMN的周长最小时,请直接写出四边形PNBM面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境
在综合实践课上,同学们以“正方形和直线的旋转”为主题分组开展数学探究活动,已知正方形ABCD,直线PQ经过点A,并绕点A旋转,作点B关于直线PQ的对称点E,直线DE交直线PQ于点F,连结AE,BE.
操作发现
(1)如图1,设∠PAB=25°则∠ADF= °.
(2)“梦想小组”的同学们发现,∠BEF的度数是一个定值,这个值为 .
(3)“创新小组”的同学们发现,线段AB、DF、EF之间存在特殊的数量关系,请写出这一关系式,并说明理由:
拓展应用
(4)如图2,当直线PQ在正方形ABCD的外部时,“进取小组”的同学们发现(3)的结论仍然成立,并提出新问题;若DF=3,EF=4,直接写出正方形ABCD的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,AD与BC相交于点E,AF平分∠BAD,交BC于点F,交CD的延长线于点G.
(1)若∠G=29°,求∠ADC的度数;
(2)若点F是BC的中点,求证:AB=AD+CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,0)、(x2,0),其中0<x2<1,有下列结论:①b2﹣4ac>0;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④当m为任意实数时,a﹣b≤am2+bm;⑤3a+c=0.其中,正确的结论有( )
A.②③④B.①③⑤C.②④⑤D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有4张相同的卡片分别写着数字﹣1、2、﹣3、4,将卡片的背面朝上,并洗匀.从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的b.则这个一次函数的图象恰好经过第一、二、四象限的概率是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com