精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,已知∠B∠C的平分线相交于点F,经过点FDE//BC,交ABD,交AC于点E,若BD+CE=9,则线段DE的长为( )

A. 9 B. 8 C. 7 D. 6

【答案】A

【解析】

试题根据△ABC中,∠ABC∠ACB的平分线相交于点F,可得∠DBF=∠FBC∠ECF=∠FCB,再根据两直线平行内错角相等,可得∠DFB=∠FBC∠EFC=∠FCB,则有∠DBF=∠DFB∠EFC=∠ECF,根据等角对等边可得BD=FDEC=EF,然后利用等量代换即可求出线段DE的长.

∵BF∠ABC的平分线,CF∠ACB的平分线,

∴∠DBF=∠FBC∠ECF=∠FCB

∵DE∥BC

∴∠DFB=∠FBC∠EFC=∠FCB

∴∠DBF=∠DFB∠EFC=∠ECF

∴BD=FDEC=EF

DE=DF+FE=BD+CE=9

故选A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知双曲线y= 经过点B(3 ,1),点A是双曲线第三象限上的动点,过B作BC⊥y轴,垂足为C,连接AC.
(1)求k的值;
(2)若△ABC的面积为6 ,求直线AB的解析式;
(3)在(2)的条件下,写出反比例函数值大于一次函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8,则AC的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线AC、BD交于点O,且DEAC,CEBD.

(1)求证:四边形OCED是菱形;

(2)若∠BAC=30°,AC=4,求菱形OCED的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交于点A(﹣4,0),与y轴交于点B(0,4).

(1)求抛物线的函数解析式;
(2)在x轴上有一点P,点P在直线AB的垂线段为PC,C为垂足,且PC= ,求点P的坐标;
(3)如图(2),将原抛物线向左平移,使平移后的抛物线过原点,与原抛物线交于点D,在平移后的抛物线上是否存在点E,使SAPE=SACD?若存在,请求出点E的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①所示,空圆柱形容器内放着一个实心的“柱锥体”(由一个圆柱和一个同底面的圆锥组成的几何体).现向这个容器内匀速注水,水流速度为5cm3/s,注满为止.已知整个注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请你根据图中信息,解答下列问题:
(1)圆柱形容器的高为cm,“柱锥体”中圆锥体的高为cm;
(2)分别求出圆柱形容器的底面积与“柱锥体”的底面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+ x+c的图象与y轴交于点A(0,4),与x轴交于点B,C,点C的坐标为(8,0),连接AC.

(1)请直接写出二次函数y=ax2+ x+c的表达式;
(2)判断△ABC的形状,并说明理由;
(3)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的⊙O过点E.
(1)求证:四边形ABCD的是菱形;
(2)若CD的延长线与圆相切于点F,已知直径AB=4,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰三角形ABC中,ABAC=10,BC=12,DBC边上的任意一点,过点D分别作DEABDFAC,垂足分别为EF,则DEDF______

查看答案和解析>>

同步练习册答案