精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C=90°,点OAC上,以OA为半径的⊙OAB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.

(1)求证:直线DE⊙O的切线;

(2)若AB=5,BC=4,OA=1,求线段DE的长.

【答案】(1)详见解析;(2)线段DE的长为

【解析】

(1)连接OD,如图,根据线段垂直平分线的性质得ED=EB,则∠EDB=B,再利用等量代换计算出∠ODE=90°,则ODDE,然后根据切线的判定定理得到结论;

(2)作OHADH,则AH=DH,利用∠A的正弦可计算出OH=,则AH=,AD=2AH=,所以BF=,然后利用∠B的余弦计算出EB,从而得到ED的长.

(1)连接OD,如图,

EF垂直平分BD,

ED=EB,

∴∠EDB=B,

OA=OD,

∴∠A=ODA,

∵∠A+B=90°,

∴∠ODA+EDB=90°,

∴∠ODE=90°,

ODDE,

∴直线DE是⊙O的切线;

(2)OHADH,如图,则AH=DH,

RtOAB中,sinA==

RtOAH中,sinA==

OH=

AH==

AD=2AH=

BD=5﹣=

BF=BD=

RtABC中,cosB=

RtBEF中,cosB==

BE=×=

∴线段DE的长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】长丰草蒜是安徽省特色水果,安徽省的特产之一,其产地长丰县是国家无公害草莓生产示范基地.小李从长丰通过某快递公司给在北京的姥姥寄一盒草莓,快递时,他了解到这个公司除收取每次8元的包装费外,草莓不超过1千克收费22元,超过1千克,则超出部分按每千克10元加收费用.设该公司从长丰到北京快寄草莓的费用为y(元),所寄草莓为x(千克)

1)求yx之间的函数关系式;

2)已知小李给姥娆快寄了2.5千克草毒,请你求出这次快寄的费用是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从安陆到武汉市,可乘坐普通列车或高铁,已知高铁的行驶路程是100千米,普通列车的行驶路程是高铁的行驶路程的1.3.

1)求普通列车的行驶路程;

2)设计高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短45分钟,求高铁的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,动点从点出发,沿运动,点在运动过程中速度始终为,以点为圆心,线段长为半径作圆,设点的运动时间为,当个交点时,此时的值不可能是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数(是常数,)在同一平面直角坐标系的图象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,点A、B、Cx轴上,点D、Ey轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQy轴与抛物线交于点Q.

(1)求经过B、E、C三点的抛物线的解析式;

(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;

(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,∠A=30°,BC=6.

(1)实践操作:尺规作图,不写作法,保留作图痕迹.

∠ABC的角平分线交AC于点D.

作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.

(2)推理计算:四边形BFDE的面积为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】模型建立:

(1)如图1,等腰直角三角形ABC中,∠ACB=90°CB=CA,直线ED经过点C,过AADEDD,过BBEEDE

求证:△BEC≌△CDA

模型应用:

(2)已知直线l1y=x+4y轴交与A点,将直线l1绕着A点顺时针旋转45°l2,如图2,求l2的函数解析式.

(3)如图3,矩形ABCOO为坐标原点,B的坐标为(86)AC分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是直线y=2x-6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y1=ax2+bx+ca≠0)图象的一部分,抛物线的顶点坐标A13),与x轴的一个交点B40),直线y2=mx+nm≠0)与抛物线交于AB两点,下列结论:

①2a+b=0②abc0方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(﹣10);1x4时,有y2y1

其中正确的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

同步练习册答案