精英家教网 > 初中数学 > 题目详情

【题目】小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中,如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象,则下列结论中不正确的是(  )

A. 公园离小明家1600

B. 小明出发分钟后与爸爸第一次相遇

C. 小明在公园停留的时间为5分钟

D. 小明与爸爸第二次相遇时,离家的距离是960

【答案】D

【解析】

依据图象可得:公园离小明家1600米;依据小明从家出发到公园晨练时的速度,以及小明爸爸从公园按小明的路线返回家中的速度,即可得到小明出后与爸爸第一次相遇的时间;由图可得:30分钟后小明与爸爸第二次相遇时,离家的距离是640米;依据小明在与爸爸第二次相遇后回到家的时间,以及小明在公园锻炼一段时间后按原路返回的速度,即可得到小明在公园停留的时间为1510=5分钟.

解:由图可得:公园离小明家1600米,故A选项正确;

小明从家出发到公园晨练时,速度为1600÷10=160/分,小明爸爸从公园按小明的路线返回家中的速度为1600÷50=32/分,

小明出后与爸爸第一次相遇的时间为1600÷160+32=分钟,故B选项正确;

由图可得:30分钟后小明与爸爸第二次相遇时,离家的距离是160030×32=640米,故D选项错误;

小明在与爸爸第二次相遇后回到家的时间为:4030=10分,

小明在公园锻炼一段时间后按原路返回的速度为640÷10=64/分,

∴401600÷64=15分,

小明在公园停留的时间为1510=5分钟,故C选项正确.

故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,四边形OACB为菱形,OBx轴的正半轴上,∠AOB=60°,过点A的反比例函数y= 的图像与BC交于点F,则AOF的面积为 ______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的函数y+x,如表是yx的几组对应值:

x

4

3

-2

-

-1

-

-

1

2

3

4

y

-

-

-

-

-2

-

-

2

如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出了此函数的图象请你根据学习函数的经验,根据画出的函数图象特征,对该函数的图象与性质进行探究:

1)该函数的图象关于 对称;

2)在y轴右侧,函数变化规律是当0x1yx的增大而减小;当x1yx的增大而增大.在y轴左侧,函数变化规律是

3)函数yx 时,y有最 值为

4)若方程+xm有两个不相等的实数根,则m的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线yax2+bx+c(a≠0)x轴交于AB两点,点P在抛物线上(AB两点不重合),若△ABP的三边满足AP2+BP2AB2,则我们称点P为抛物线yax2+bx+c(a≠0)的勾股点.

(1)直接写出抛物线yx21的勾股点坐标为_____

(2)如图2,已知抛物线:yax2+bx(a0b0)x轴交于AB两点,点P为抛物线的顶点,问点P能否为抛物线的勾股点,若能,求出b的值;

(3)如图3,在平面直角坐标系中,点A(20)B(120),点Px轴的距离为1,点P是过AB两点的抛物线上的勾股点,求过PAB三点的抛物线的解析式和点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y/千克,y关于x的函数解析式为 且第12天的售价为32/千克,第26天的售价为25/千克.已知种植销售蓝莓的成木是18/千克,每天的利润是W元(利润=销售收入﹣成本).

(1)m=   ,n=   

(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?

(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.

(1)证明:PC=PE;

(2)求CPE的度数;

(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,BC3,∠BAC30°,斜边AB的两个端点分别在相互垂直的射线OMON上滑动.下列结论:①若CO两点关于AB对称,则OA3;②若AB平分CO,则ABCO;③CO两点间的最大距离是6;④斜边AB的中点D运动的路径长是π,其中正确的有(  )

A. ①②B. ③④C. ②③④D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在RtABC中,∠C90°,AC8cmBC6cm,点PB出发沿BA方向向点A匀速运动,速度为1cm/s;点QA出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为ts)(0t4),解答下列问题:

1)当t为何值时,PQBC

2)设△AQP的面积为ycm2),求yt之间的函数关系式;

3)是否存在某一时刻t,使线段PQ恰好把RtACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;

4)如图,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,那么是否存在某一时刻t,使四边形PQPC为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=10AC=8BC=6,以边AB的中点O为圆心,作半圆与AC相切,点PQ分别是边BC和半圆上的动点,连接PQ,则PQ长的最小值是_______.

查看答案和解析>>

同步练习册答案