精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点A1、A2、…A2018在函数y=2x2位于第二象限的图象上,点B1、B2,…,B2018在函数y=2x2位于第一象限的图象上,点C1,C2,…,C2018y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2,…,C2017A2018C2018B2018都是正方形,则正方形C2017A2018C2018B2018的边长是_____

【答案】1009

【解析】

根据正方形对角线平分一组对角可得OB1y轴的夹角为45°,然后表示出OB1的解析式,再与抛物线解析式联立求出点B1的坐标,然后求出OB1的长,再根据正方形的性质求出OC1,表示出C1B2的解析式,与抛物线联立求出B2的坐标,然后求出C1B2的长,再求出C1C2的长,然后表示出C2B3的解析式,与抛物线联立求出B3的坐标,然后求出C2B3的长,从而根据边长的变化规律解答即可.

解:∵OA1C1B1是正方形,
∴OB1y轴的夹角为45°,
∴OB1的解析式为y=x,
联立方程组得:
解得
∴B点的坐标是:(),
∴OB1= ==1×
同理可得:正方形C1A2C2B2的边长C1B2=2×

依此类推,正方形C2017A2018C2018B2018的边长是为2018×=1009
故答案为1009

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,面积为10的垂直平分线分别交于点。若点的中点,点为线段上一动点,则周长的最小值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一副直角三角板拼在一起得四边形ABCD,ACB=45°,ACD=30°,点ECD边上的中点,连接AE,将ADE沿AE所在直线翻折得到AD′E,D′EACF点,若AB= 6cm,点D′BC的距离是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数 y=-x+b 与反比例函数y=(x>0)的图象交于 A,B 两点,与 x 轴、y轴分别交于C,D 两点,连接 OA,OB,过 A AEx 轴于点 E,交 OB 于点F,设点 A 的横坐标为 m. SOAF+S 四边形 EFBC=4,则 m 的值是( )

A. 1 B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c 的图象与 x 轴交于 B、C 两点,交 y 轴于点 A.

(1)根据图象请用“>”、“<”“=”填空:a 0,b 0,c 0;

(2)如果 OC=OA= OB,BC=3,求这个二次函数的解析式;

(3) 在(2)中抛物线的对称轴上,存在点 Q 使得OQA 的周长最短,试求出点 Q 的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.

(1)求A,B两点的坐标;

(2)过B点作直线BP与x轴相交于P,且使OP=2OA, 求ΔABP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】服装店购进一批秋衣,价格为每件30元.物价部门规定其销售单价不高于每件70元,经市场调查发现:日销售量y(件)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.

(1)求出yx的函数关系式.

(2)求该服装店要想销售这批秋衣日获利750元,售价应定多少元?

(3)请销售单价为多少元时,该服装店日获利最大?最大获利是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是等边三角形,点边上一点,以为边作等边,连接.若,则

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,AB⊙O的直径,CM⊙O于点C,∠BCM=60°,则∠B的正切值是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案