【题目】如图,已知点A1、A2、…A2018在函数y=2x2位于第二象限的图象上,点B1、B2,…,B2018在函数y=2x2位于第一象限的图象上,点C1,C2,…,C2018在y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2,…,C2017A2018C2018B2018都是正方形,则正方形C2017A2018C2018B2018的边长是_____.
【答案】1009
【解析】
根据正方形对角线平分一组对角可得OB1与y轴的夹角为45°,然后表示出OB1的解析式,再与抛物线解析式联立求出点B1的坐标,然后求出OB1的长,再根据正方形的性质求出OC1,表示出C1B2的解析式,与抛物线联立求出B2的坐标,然后求出C1B2的长,再求出C1C2的长,然后表示出C2B3的解析式,与抛物线联立求出B3的坐标,然后求出C2B3的长,从而根据边长的变化规律解答即可.
解:∵OA1C1B1是正方形,
∴OB1与y轴的夹角为45°,
∴OB1的解析式为y=x,
联立方程组得: ,
解得 , .
∴B点的坐标是:(,),
∴OB1= ==1×;
同理可得:正方形C1A2C2B2的边长C1B2=2×;
…
依此类推,正方形C2017A2018C2018B2018的边长是为2018×=1009.
故答案为1009.
科目:初中数学 来源: 题型:
【题目】如图,将一副直角三角板拼在一起得四边形ABCD,∠ACB=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F点,若AB= 6cm,点D′到BC的距离是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数 y=-x+b 与反比例函数y=(x>0)的图象交于 A,B 两点,与 x 轴、y轴分别交于C,D 两点,连接 OA,OB,过 A 作 AE⊥x 轴于点 E,交 OB 于点F,设点 A 的横坐标为 m. 若 S△OAF+S 四边形 EFBC=4,则 m 的值是( )
A. 1 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c 的图象与 x 轴交于 B、C 两点,交 y 轴于点 A.
(1)根据图象请用“>”、“<”或“=”填空:a 0,b 0,c 0;
(2)如果 OC=OA= OB,BC=3,求这个二次函数的解析式;
(3) 在(2)中抛物线的对称轴上,存在点 Q 使得△OQA 的周长最短,试求出点 Q 的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.
(1)求A,B两点的坐标;
(2)过B点作直线BP与x轴相交于P,且使OP=2OA, 求ΔABP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】服装店购进一批秋衣,价格为每件30元.物价部门规定其销售单价不高于每件70元,经市场调查发现:日销售量y(件)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.
(1)求出y与x的函数关系式.
(2)求该服装店要想销售这批秋衣日获利750元,售价应定多少元?
(3)请销售单价为多少元时,该服装店日获利最大?最大获利是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com