【题目】完成下面的证明:
如图,FG//CD,∠1=∠3,∠B=50°,求∠BDE的度数.
解:∵FG//CD (已知)
∴∠2=_________( )
又∵∠1=∠3
∴∠3=∠_________( )
∴BC//__________( )
∴∠B+________=180°( )
又∵∠B=50°
∴∠BDE=130°.
【答案】∠1;两直线平行,同位角相等;∠2;等量代换;DE;内错角相等,两直线平行;∠BDE;两直线平行,同旁内角互补
【解析】
由两直线平行,同位角相等,得到∠2=∠1,再由等式的性质得到∠3=∠2,从而得到BC//DE,再由平行线的性质得到∠B+∠BDE=180°,从而得到结论.
解:∵FG//CD(已知)
∴∠2=∠1(两直线平行,同位角相等)
又∵∠1=∠3,
∴∠3=∠2(等量代换)
∴BC//DE(内错角相等,两直线平行)
∴∠B+∠BDE=180°(两直线平行,同旁内角互补)
又∵∠B=50°
∴∠BDE=130°.
故答案为:∠1;两直线平行,同位角相等;∠2;等量代换;DE;内错角相等,两直线平行;∠BDE;两直线平行,同旁内角互补.
科目:初中数学 来源: 题型:
【题目】推理填空
如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,求证:CE∥DF.请完成下面的解题过程.
解:∵BD平分∠ABC,CE平分∠ACB ( 已知 )
∴∠DBC=∠_____,∠ECB=∠_____ ( 角平分线的定义)
又∵∠ABC=∠ACB (已知)
∴∠_____=∠_____.
又∵∠_____=∠_____ (已知)
∴∠F=∠_____
∴CE∥DF_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).
(1)求此抛物线的解析式;
(2)写出顶点坐标及对称轴;
(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:
(1)画线段AD∥BC且使AD=BC,连接CD;
(2)线段AC的长为___,CD的长为___,AD的长为___.
(3)试判断△ACD的形状,并求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D,E分别在AB,AC上,DE∥BC,F是AD上一点,FE的延长线交BC的延长线于点G.求证:
(1)∠EGH>∠ADE;
(2)∠EGH=∠ADE+∠A+∠AEF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,BD是斜边上高动点P从点A出发沿AB边由A向终点B以的速度匀速移动,动点Q从点B出发沿射线BC以的速度匀速移动,点P、Q同时出发,当点P停止运动,点Q也随之停止连接AQ,交射线BD于点设点P运动时间为t秒.
在运动过程中,的面积始终是的面积的2倍,为什么?
当点Q在线段BC上运动时,t为何值时,和相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中将向下平移3个单位长度得到直线,直线与x轴交于点C;直线:与x轴、y轴交于A、B两点,且与直线交于点D.
填空:点A的坐标为______,点B的坐标为______;
直线的表达式为______;
在直线上是否存在点E,使?若存在,则求出点E的坐标;若不存在,请说明理由.
如图2,点P为线段AD上一点不含端点,连接CP,一动点H从C出发,沿线段CP以每秒1个单位的速度运动到点P,再沿线段PD以每秒个单位的速度运动到点D后停止,求点H在整个运动过程中所用时间最少时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com