精英家教网 > 初中数学 > 题目详情

【题目】某市地铁2号线已开工,全长约332000m,将332000科学记数法表示应为(  )

A. 0.332×106 B. 3.32×105 C. 33.2×104 D. 332×103

【答案】B

【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

解:将332000科学记数法表示应为3.32×105

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)四年一度的国际数学家大会于2002820日在北京召开,大会会标如图8它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.

2)现有一张长为6.5cm,宽为2cm的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.

(1)求∠ADE的度数;

(2)求证:DE=AD+DC;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】你能求(x﹣1)(x99+x98+x97+…+x+1)的值吗?
遇到这样的问题,我们可以先思考一下,从简单的情形入手.先计算下列各式的值:
(1)(x﹣1)(x+1)=;
(2)(x﹣1)(x2+x+1)=;
(3)(x﹣1)(x3+x2+x+1)=;
由此我们可以得到(x﹣1)(x99+x98+…+x+1)=;
请你利用上面的结论,完成下面两题的计算:
(1)299+298+…+2+1;
(2)(﹣3)50+(﹣3)49+…+(﹣3)+1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角ABC中,ABC=90°,点M是AC的中点,以AB为直径作O分别交AC,BM于点D,E.

(1)求证:MD=ME;

(2)填空:连接OE,OD,当A的度数为 时,四边形ODME是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xOy中,点B(﹣2,2),过反比例函数y=(x0,常数k0)图象上一点A(﹣,m)作y轴的平行线交直线l:y=x+2于点C,且AC=AB.

(1)分别求出m、k的值,并写出这个反比例函数解析式;

(2)发现:过函数y=(x0)图象上任意一点P,作y轴的平行线交直线l于点D,请直接写出你发现的PB,PD的数量关系

应用:①如图2,连接BD,当PBD是等边三角形时,求此时点P的坐标;

②如图3,分别过点P、D作y的垂线交y轴于点E、F,问是否存在点P,使得矩形PEFD的周长取得最小值?若存在,请求出此时点P的坐标及矩形PEFD的周长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是O的直径,C是O上的点,且OEAC于点E,过点C作O的切线,交OE的延长线于点D,交AB的延长线于点F,连接AD.(1)求证:AD是O的切线;

(2)若cosBAC=,AC=8,求线段AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x2+2x10,则3x2+6x2___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.

(2)D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)

(3)D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案