如图,二次函数y=ax2+bx(a<0)的图象过坐标原点O,与x轴的负半轴交于点A,过A点的直线与y轴交于B,与二次函数的图象交于另一点C,且C点的横坐标为﹣1,AC:BC=3:1.
(1)求点A的坐标;
(2)设二次函数图象的顶点为F,其对称轴与直线AB及x轴分别交于点D和点E,若△FCD与△AED相似,求此二次函数的关系式.
![]()
(1)(﹣4,0);(2)y=﹣x2﹣4x.
【解析】
试题分析:(1)过点C作CM∥OA交y轴于M,则△BCM∽△BAO,根据相似三角形对应边成比例得出
,即OA=4CM=4,由此得出点A的坐标为(﹣4,0).
(2)先将A(﹣4,0)代入y=ax2+bx,化简得出b=4a,即y=ax2+4ax,则顶点F(﹣2,﹣4a),设直线AB的解析式为y=kx+n,将A(﹣4,0)代入,化简得n=4k,即直线AB的解析式为y=kx+4k,则B点(0,4k),D(﹣2,2k),C(﹣1,3k).由C(﹣1,3k)在抛物线y=ax2+4ax上,得出3k=a﹣4a,化简得到k=﹣a.再由△FCD与直角△AED相似,则△FCD是直角三角形,又∠FDC=∠ADE<90°,∠CFD<90°,得出∠FCD=90°,△FCD∽△AED.再根据两点之间的距离公式得出FC2=CD2=1+a2,得出△FCD是等腰直角三角形,则△AED也是等腰直角三角形,所以∠DAE=45°,由三角形内角和定理求出∠OBA=45°,那么OB=OA=4,即4k=4,求出k=1,a=﹣1,进而得到此二次函数的关系式为y=﹣x2﹣4x.
试题解析:【解析】
(1)如答图,过点C作CM∥OA交y轴于M.
∵AC:BC=3:1,∴
.
∵CM∥OA,∴△BCM∽△BAO.∴
.
∵C点的横坐标为﹣1,∴CM=1.∴OA=4CM=4.
∴点A的坐标为(﹣4,0).
(2)∵二次函数y=ax2+bx(a<0)的图象过A点(﹣4,0),
∴16a﹣4b=0.∴b=4a.
∴y=ax2+4ax,对称轴为直线x=﹣2,F点坐标为(﹣2,﹣4a).
设直线AB的解析式为y=kx+n,将A(﹣4,0)代入,得﹣4k+n=0,∴n=4k.
∴直线AB的解析式为y=kx+4k.
∴B点坐标为(0,4k),D点坐标为(﹣2,2k),C点坐标为(﹣1,3k).
∵C(﹣1,3k)在抛物线y=ax2+4ax上,∴3k=a﹣4a,∴k=﹣a.
∵△AED中,∠AED=90°,
∴若△FCD与△AED相似,则△FCD是直角三角形.
∵∠FDC=∠ADE<90°,∠CFD<90°,∴∠FCD=90°.
∴△FCD∽△AED.
∵F(﹣2,﹣4a),C(﹣1,3k),D(﹣2,2k),k=﹣a,
∴FC2=(﹣1+2)2+(3k+4a)2=1+a2,CD2=(﹣2+1)2+(2k﹣3k)2=1+a2.
∴FC=CD.∴△FCD是等腰直角三角形.∴△AED是等腰直角三角形.
∴∠DAE=45°.∴∠OBA=45°.∴OB=OA=4.
∴4k=4.∴k=1.∴a=﹣1.
∴此二次函数的关系式为y=﹣x2﹣4x.
![]()
考点:1.二次函数综合题;2.曲线上点的坐标与方程的关系;3.待定系数法的应用;4.二次函数的性质;5.相似三角形的判定和性质;6.等腰直角三角形的判定和性质.
科目:初中数学 来源:2014年初中毕业升学考试(江苏淮安卷)数学(解析版) 题型:解答题
如图,点A(1,6)和点M(m,n)都在反比例函数y=
(x>0)的图象上,
(1)k的值为 ;
(2)当m=3,求直线AM的解析式;
(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏淮安卷)数学(解析版) 题型:选择题
地球与月球的平均距离大约为384000km,将384000用科学记数法表示应为( )
A.0.384×106 B.3.84×106 C.3.84×105 D.384×103
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏无锡卷)数学(解析版) 题型:解答题
如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏徐州卷)数学(解析版) 题型:解答题
如图,将透明三角形纸片PAB的直角顶点P落在第四象限,顶点A、B分别落在反比例函数
图象的两支上,且PB⊥x于点C,PA⊥y于点D,AB分别与x轴,y轴相交于点E、F.已知B(1,3).
(1)k= ;
(2)试说明AE=BF;
(3)当四边形ABCD的面积为
时,求点P的坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com