精英家教网 > 初中数学 > 题目详情

【题目】如图,一个半径为r的圆形纸片在边长为a( )的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是(
A.
B.
C.
D.πr2

【答案】C
【解析】解:如图,当圆形纸片运动到与∠A的两边相切的位置时, 过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,
连AO1 , 则Rt△ADO1中,∠O1AD=30°,O1D=r,
.由
∵由题意,∠DO1E=120°,得
∴圆形纸片不能接触到的部分的面积为 =
故选:C.

过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1 , 则在Rt△ADO1中,可求得 .四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知非直角三角形ABCA=45°,高BDCE所在直线交于点H,则∠BHC的度数是( )

A. 45° B. 45° 125° C. 45°135° D. 135°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:
(1)x2﹣6x﹣16=0
(2)(x﹣3)2=3x(x﹣3)
(3)(x+3)(x﹣2)=50
(4)(2x+1)2+3(2x+1)+2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②﹣b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB边的垂直平分线BCDAC边的垂直平分线BCE 相交于点OADE的周长为6cm

1)求BC的长;

2)分别连结OAOBOC,若△OBC的周长为16cm,求OA的长;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学老师在课堂上提出一个问题:通过探究知道: ≈1.414…,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少,小明举手回答:它的小数部分我们无法全部写出来,但可以用1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:

1的小数部分是a 的整数部分是b,求a+b的值.

2)已知8+=x+y,其中x是一个整数,0y1,求3x+y2018的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在四边形ABCD中,∠A=90°,AD=6,AB=8,BC=26,CD=24

(1)求四边形ABCD的面积.

(2)求D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.
(1)求⊙O的半径;
(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.

(1)当t=时,△PQR的边QR经过点B
(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;
(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.

查看答案和解析>>

同步练习册答案