分析 (1)①D在线段AB上时,在直线l上截取CE=CF=CD,即可画出图象.②在图1中证明△ACD≌△BCF得到AD=BF,∠BAC=∠FBC,利用∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.
(2)①D在线段AB延长线上时,在直线l上截取CE=CF=CD,即可画出图象.②在图2中证明△ACD≌△BCF得到AD=BF,∠BAC=∠FBC,利用∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.
解答 解:(1)①见图1所示.
②证明:∵CD⊥EF,![]()
∴∠DCF=90°,
∵∠ACB=90°,
∴∠ACB=∠DCF,
∴∠ACD=∠BCF
∵BC=AC,CD=CF,
∴△ACD≌△BCF,
∴AD=BF,∠BAC=∠FBC,
∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,
即BF⊥AD.
故答案为:垂直、相等.
(2)①见图2所示.![]()
②成立.理由如下:
证明:∵CD⊥EF,
∴∠DCF=90°,
∵∠ACB=90°,
∴∠DCF+∠BCD=∠ACB+∠BCD,
即∠ACD=∠BCF,
∵BC=AC,CD=CF,
∴△ACD≌△BCF,
∴AD=BF,∠BAC=∠FBC,
∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,
即BF⊥AD.
点评 本题考查等腰直角三角形的性质、全等三角形的判定和性质、两条直线垂直的证明方法,寻找全等三角形是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com