精英家教网 > 初中数学 > 题目详情

【题目】如图,BD是⊙O的切线,B为切点,连接DO与⊙O交于点C,AB为⊙O的直径,连接CA,若∠D=30°,⊙O的半径为4,则图中阴影部分的面积为

【答案】 π﹣4
【解析】如图,过O作OE⊥CA于点E,

∵DB为⊙O的切线,

∴∠DBA=90°,

∵∠D=30°,

∴∠BOC=60°,

∴∠COA=120°,

∵OC=OA=4,

∴∠OAE=30°,

∴OE=2,CA=2AE=4

∴S阴影=S扇形COA﹣SCOA= ×2×4 = π﹣4

故答案为: π﹣4

阴影部分面积等于扇形面积减三角形面积,求三角形面积缺高,因此需要作高,由切线的性质可得∠DBA=90°,由已知∠D=30°可得∠COA=120°,可算出高OE的长,进而算出阴影面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)计算:()2+(2+)(2)

(2)因式分解:9a2(x﹣y)+4b2(y﹣x)

(3)先化简,再求值:÷(a﹣1﹣),其中a2﹣a﹣6=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.
(1)直接写出销售量y个与降价x元之间的函数关系式;
(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?
(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某天放学后,小敏徒步回家,如图所示,反映了她的速度与时间的变化关系.

(1)请你根据图象填写下表:

时间/

0

2

4

8

10

12

14

16

18

20

24

速度/(千米/)

(2)根据图象或表格你能叙述一下小敏行走的情况吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】是某汽车行驶的路程S(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答下列问题:

1)汽车在前9分钟内的平均速度是多少?

2)汽车在中途停了多长时间?

316≤t≤30时,求St的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段AB的长为10cm,点DAB上的一个动点,不与点A重合,以AD为边作等边△ACD,过点DDPCD,过DP上一动点G(不与点D重合)作矩形CDGH,对角线交于点O,连接OA、OB,则线段OB的最小值是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△AOB的直角边OA在x轴上,OA=2,AB=1,将Rt△AOB绕点O逆时针旋转90°得到Rt△COD,抛物线y=﹣ x2+bx+c经过B、D两点.

(1)求二次函数的解析式;
(2)连接BD,点P是抛物线上一点,直线OP把△BOD的周长分成相等的两部分,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.

(1)如图1所示,易证:OH= AD且OH⊥AD(不需证明)
(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC,AB=AC,∠BAC=120°,DBC的中点,DE⊥ABE,求EB:EA的值

查看答案和解析>>

同步练习册答案