精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.
(1)求证:CF=CH;
(2)△ABC不动,将△EDC绕点C旋转到∠BCE=45°,证明:四边形ACDM是菱形.

【答案】
(1)证明:在△ACB和△ECD中,

∵∠ACB=∠ECD=90°,

∴∠1+∠ECB=∠2+∠ECB,

∴∠1=∠2;

又∵AC=CE=CB=CD,

∴∠A=∠D=45°;

在△CFA和△CHD中,

∴△CFA≌△CHD(AAS),

∴CF=CH


(2)证明:∵∠ACB=∠ECD=90°,∠BCE=45°,

∴∠1=45°,∠2=45°.

又∵∠E=∠B=45°,

∴∠1=∠E,∠2=∠B,

∴AC∥MD,CD∥AM,

∴四边形ACDM是平行四边形,

又∵AC=CD,

∴平行四边形ACDM是菱形


【解析】(1)先根据直角三角形的性质得出∠1=∠2,再由AAS定理得出△CFA≌△CHD,进而可得出结论;(2)根据∠BCE=45°得出∠1=∠2=45°.根据∠E=∠B=45°得出∠1=∠E,∠2=∠B,故可得出四边形ACDM是平行四边形,再由AC=CD即可得出结论.
【考点精析】本题主要考查了菱形的判定方法和旋转的性质的相关知识点,需要掌握任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AD是中线,AE是角平分线,CFAEFAB=5,AC=2,则DF的长为.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论: ①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0
其中正确的是(

A.①②
B.只有①
C.③④
D.①④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为( )

A.(
B.(2,2)
C.( ,2)
D.(2,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线 y=x+2 与两坐标轴分别交于A、B 两点,点 C OB 的中点,D、E 别是直线 AB、y 轴上的动点,则△CDE 周长的最小值是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC= ,则图中阴影部分的面积等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于(
A.70°
B.80°
C.60°
D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD为平行四边形,DFEC和BCGH为正方形.求证:AC⊥EG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.

(1)求抛物线的解析式;
(2)求△MCB的面积SMCB

查看答案和解析>>

同步练习册答案