【题目】在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随着点的位置变化而变化.
(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是______,与的位置关系是______;
(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);
(3)如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.
【答案】(1),;(2)结论仍然成立,理由:略;(3)
【解析】
(1)连接AC,根据菱形的性质和等边三角形的性质得出△BAP≌△CAE,再延长交于, 根据全等三角形的性质即可得出;
(2)结论仍然成立.证明方法同(1);
(3)根据(2)可知△BAP≌△CAE,根据勾股定理分别求出AP和EC的长,即可解决问题;
(1)如图1中,结论:,.
理由:连接.
∵四边形是菱形,,
∴,都是等边三角形,,
∴,,
∵是等边三角形,
∴,,
∵,
∴,
,
∴,
∴,,
延长交于,
∵,
∴,
∴,即.
故答案为,.
(2)结论仍然成立.
理由:选图2,连接交于,设交于.
∵四边形是菱形,,
∴,都是等边三角形,,
∴,,
∵是等边三角形,
∴,,
∴.
,
∴,
∴,,
∵,
∴,
∴,即.
选图3,连接交于,设交于.
∵四边形ABCD是菱形,,
∴,都是等边三角形,,
∵是等边三角形,
∴,,
∴.
,
∴,
∴,,
∵,
∴,
∴,即.
(3),
由(2)可知,,
在菱形中,,
∴,
∵,,
在中,,
∴,
∵与是菱形的对角线,
∴,,
∴,
∴,,
∴,
在中,,
∴.
科目:初中数学 来源: 题型:
【题目】如图,已知线段,是直线上一动点,点,分别为,的中点,对下列各值:①线段的长;②的周长;③的面积;④直线,之间的距离;⑤的大小.其中不会随点的移动而改变的是_____.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.
(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=90,AB=AC.点D为直线BC上一动点(点D不与点B、C重合),以AD为直角边在AD右侧作等腰直角三角形ADE,使DAE=90,连结CE.
探究:如图①,当点D在线段BC上时,证明BC=CE+CD.
应用:在探究的条件下,若AB=,CD=1,则△DCE的周长为_______.
拓展:(1)如图②,当点D在线段CB的延长线上时,BC、CD、CE之间的数量关系为_______.
(2)如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0)。
(1)求点B的坐标;
(2)已知,C为抛物线与y轴的交点。
①若点P在抛物线上,且,求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=120°,OP平分∠AOB,且OP=1.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有( )
A.1个B.2个C.3个D.无数个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数 y=ax2+bx+c(a≠0),过(1,y1)(2,y2).
①若 y1>0 时,则 a+b+c>0
②若 a=b 时,则 y1<y2
③若 y1<0,y2>0,且 a+b<0,则 a>0
④若 b=2a﹣1,c=a﹣3,且 y1>0,则抛物线的顶点一定在第三象限上述四个判断正确的有( )个.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线y=ax2+2ax+c与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)当a>0时,如图所示,若点D是第三象限方抛物线上的动点,设点D的横坐标为m,三角形ADC的面积为S,求出S与m的函数关系式,并直接写出自变量m的取值范围;请问当m为何值时,S有最大值?最大值是多少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com