【题目】如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.
(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.
【答案】(1)AD=3,(2)当或时,以P、Q、C为顶点的三角形与△ADE相似(3)存在符合条件的M、N点,它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);
②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣)
【解析】
解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10。
由折叠的性质得,△BDC≌△EDC,∴∠B=∠DEC=90°,EC=BC=10,ED=BD。
由勾股定理易得EO=6。∴AE=10﹣6=4。
设AD=x,则BD=CD=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3。
∴AD=3。
∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),
∴,解得。∴抛物线的解析式为:。
(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,
由(1)可得AD=3,AE=4,DE=5。而CQ=t,EP=2t,∴PC=10﹣2t。
当∠PQC=∠DAE=90°,△ADE∽△QPC,
∴,即,解得。
当∠QPC=∠DAE=90°,△ADE∽△PQC,
∴,即,解得。
∴当或时,以P、Q、C为顶点的三角形与△ADE相似。
(3)存在符合条件的M、N点,它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);
②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣)。
(1)根据折叠图形的轴对称性,△CED≌△CBD,在Rt△CEO中求出OE的长,从而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式。
(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE,若以P、Q、C为顶点的三角形与△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t的值。
(3)假设存在符合条件的M、N点,分两种情况讨论:
①EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点。
由得抛物线顶点,则:M(4,)。
∵平行四边形的对角线互相平分,∴线段MN必被EC中点(4,3)平分,则N(4,﹣)。
②EC为平行四边形的边,则ECMN,
设N(4,m),则M(4﹣8,m+6)或M(4+8,m﹣6);
将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,
此时 N(4,﹣38)、M(﹣4,﹣32);
将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,
此时 N(4,﹣26)、M(12,﹣32)。
综上所述,存在符合条件的M、N点,它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);
②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣)。
科目:初中数学 来源: 题型:
【题目】如图,已知线段,是直线上一动点,点,分别为,的中点,对下列各值:①线段的长;②的周长;③的面积;④直线,之间的距离;⑤的大小.其中不会随点的移动而改变的是_____.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形中,是对角线上一个动点,连结,过作,,
,分别为垂足.
(1)求证:;
(2)①写出、、三条线段满足的等量关系,并证明;②求当,时,的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人分别加工100个零件,甲第1个小时加工了10个零件,之后每小时加工30个零件.乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务.设甲、乙两人各自加工的零件数为(个),甲加工零件的时间为(时),与之间的函数图象如图所示.
(1)在乙追赶甲的过程中,求乙每小时加工零件的个数.
(2)求甲提高加工速度后甲加工的零件数与之间的函数关系式.
(3)当甲、乙两人相差12个零件时,直接写出甲加工零件的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在等腰三角形ABC中,120BAC180,ABAC,ADBC于点D,以AC为边作等边三角形ACE,ACE与ABC在直线AC的异侧,直线BE交直线AD于点F,连接FC交AE于点M.
(1)求EFC的度数;
(2)求证:FE+FA=FC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.
(1)求证:四边形BEDF是平行四边形;
(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随着点的位置变化而变化.
(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是______,与的位置关系是______;
(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);
(3)如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com