精英家教网 > 初中数学 > 题目详情

【题目】如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GECDGFBCAD=1500m,小敏行走的路线为BAGE,小聪行走的路线为BADEF,若小敏行走的路程为3100m,则小聪行走的路程为(  )m

A.3100B.4600C.3000D.3600

【答案】B

【解析】

连接CG,由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GEDC,易得DE=GE.在矩形GECF中,EF=CG.要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.

连接GC

∵四边形ABCD为正方形,

所以AD=DC,∠ADB=∠CDB=45°,

∵∠CDB=45°,GEDC

∴△DEG是等腰直角三角形,

DE=GE

在△AGD和△GDC中,

∴△AGD≌△GDCSAS

AG=CG

在矩形GECF中,EF=CG

EF=AG

BA+AD+DE+EF-BA-AG-GE

=AD=1500m

∵小敏共走了3100m

∴小聪行走的路程为3100+1500=4600m),

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】慢车和快车先后从甲地出发沿直线道路匀速驶向乙地,快车比慢车晚出发0.5小时,行驶一段时间后,快车途中体息,休息后继续按原速行驶,到达乙地后停止.慢车和快车离甲地的距离y(千米)与慢车行驶时间x(小时)之间的函数关系如图所示.

1)直接写出快车速度是  千米/小时.

2)求快车到达乙地比慢车到达乙地早了多少小时?

3)求线段BC对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.

(1)求一次函数和反比例函数的解析式;

(2)求AOB的面积;

(3)观察图象,直接写出不等式kx+b﹣>0的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线分别与轴,轴交于两点,与直线交于点.

1)点的坐标为__________,点的坐标为__________

2)在线段上有一点,过点轴的平行线交直线于点,设点的横坐标为,当为何值时,四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.

第一天

第二天

第三天

第四天

第五天

第六天

第七天

路程(km)

﹣8

﹣11

﹣14

0

﹣16

+41

+8

(1)请求出这七天平均每天行驶多少千米;

(2)若每行驶100km需用汽油6升,汽油价6.2元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一块长6米宽4米的地毯,为了美观设计了两横两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的

1)求配色条纹的宽度;

2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.(供参考数据:1052=110251152=132251252=15625

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,点A(0,4)C(2,0).

1)三角形的面积=

2)已知坐标轴上有两动点PQ同时出发,P点从C点出发沿轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿轴正方向移动,点Q到达A点整个运动随之结束,AC的中点D的坐标是(1,2),设运动时间为秒,问:是否存在这样的,使若存在,请求出的值;若不存在,请说明理由;

3)如图2,点F是线段AC上一点,满足∠FOC=FCO,G是第二象限中一点,连OG,使得∠AOG=AOF,点E是线段OA上一动点,连CEOF于点H,当点E在线段OA上运动的过程中,以下两个式子:哪个式子为定值,请求出这个定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,关于该二次函数,下列说法中错误的是(  )

A. 函数有最小值 B. 对称轴是直线x=

C. 当﹣1<x<2时,y<0 D. 当x时,y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点DE分别是ABC的边BABC延长线上的点,作∠DAC的平分线AF,若AFBC

1)求证:ABC是等腰三角形;

2)作∠ACE的平分线交AF于点G,若∠B40°,求∠AGC的度数.

查看答案和解析>>

同步练习册答案