精英家教网 > 初中数学 > 题目详情

【题目】(1)已知:|a|=3,b2=4,ab<0,求a﹣b的值.

(2)已知关于x的方程=与方程=3y﹣2的解互为倒数,求m的值.

【答案】(1)5或﹣5;(2)m=﹣

【解析】

(1)根据“|a|=3,b2=4”结合绝对值的定义和有理数的乘方的定义,再结合ab<0,求出ab的值,列式计算即可,

(2)根据解一元一次方程基本步骤,求出方程=3y﹣2的解,根据“x的方程=与方程=3y﹣2的解互为倒数,求出x的值,代入方程=得到关于m的一元一次方程,解之即可.

1)|a|=3,

a=3或﹣3,

b2=4,

b=2或﹣2,

又∵ab<0,

a﹣b=3﹣(﹣2)=5a﹣b=﹣3﹣2=﹣5,

a﹣b的值为5或﹣5,

(2)解方程=3y﹣2得:y=1,

根据题意得:x=1,

x=1代入方程=得:

解得:m=﹣

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两商场自行定价销售某一商品.

(1)甲商场将该商品提价15%后的售价为1.15元,则该商品在甲商场的原价为元;

(2)乙商场将该商品提价20%后,用6元钱购买该商品的件数比没提价前少买1件,求该商品在乙商场的原价是多少?

(3)在(1)、(2)小题的条件下,甲、乙两商场把该商品均按原价进行了两次价格调整.

甲商场:第一次提价的百分率是,第二次提价的百分率是

乙商场:两次提价的百分率都是(

请问甲、乙两商场,哪个商场的提价较多?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)
阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.
(1)再次阅读后,发现AB=寸,CD=寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件.
(2)帮助小智求出⊙O的直径

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABC的边BC的中垂线DM交∠BAC的平分线ADD DEAB于点EDFACF.连接DBDC

(1)求证:DBE≌△DFC.

(2)求证:AB+AC=2AE

(3)如图2,若ABC的边BC的中垂线DM交∠BAC的外角平分线ADDDEAB于点E,且AB>AC,写出AEBEAC之间的等量关系。(不需证明,只需在图2中作出辅助线、说明证哪两个三角形全等即可)。

图1 图2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料: 如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.
观察图象可知:
①当x=﹣3或1时,y1=y2
②当﹣3<x<0或x>1时,y1>y2 , 即通过观察函数的图象,可以得到不等式ax+b> 的解集.
有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.
某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.

下面是他的探究过程,请将(2)、(3)、(4)补充完整:
(1)①将不等式按条件进行转化: 当x=0时,原不等式不成立;
当x>0时,原不等式可以转化为x2+4x﹣1>
当x<0时,原不等式可以转化为x2+4x﹣1<
②构造函数,画出图象
设y3=x2+4x﹣1,y4= ,在同一坐标系中分别画出这两个函数的图象.
双曲线y4= 如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)
(2)确定两个函数图象公共点的横坐标 观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为
(3)借助图象,写出解集 结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是正方形ABCD的边BC上的任意一点,连接AP,作DE⊥AP,垂足是E,BF⊥AP,垂足是F.求证:DE=BF+EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知k是不等于0的常数,反比例函数与二次函数在同一坐标系的大致图象如图,则它们的解析式可能分别是(

A.y=﹣ ,y=﹣kx2+k
B.y= ,y=﹣kx2+k
C.y= ,y=kx2+k
D.y=﹣ ,y=﹣kx2﹣k

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市自来水公司为了鼓励市民节约用水,采取分段收费标准. 若某户居民每月应缴水费y(元)与用水量x(吨)的函数图象如图所示,

(1)分别写出x≤5x>5的函数解析式;

(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准;

(3)若某户居民六月交水费31元,则用水多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,梯形的上底为+2-10,下底为3-5-80,高为40.(3)

(1)用式子表示图中阴影部分的面积;

(2)当=10时,求阴影部分面积的值。

查看答案和解析>>

同步练习册答案