精英家教网 > 初中数学 > 题目详情

【题目】如图,梯形的上底为+2-10,下底为3-5-80,高为40.(3)

(1)用式子表示图中阴影部分的面积;

(2)当=10时,求阴影部分面积的值。

【答案】(1)74a2﹣60a﹣1800(2)5000.

【解析】试题分析:(1)、阴影部分的面积=梯形的面积-半圆的面积,然后用代数式进行表示出来,然后进行合并同类项化简;(2)、将a的值代入化简后的式子进行计算.

试题解析:(1)梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a

阴影部分的面积=a2+2a﹣10+3a2﹣5a﹣80×40﹣π2

=80a2﹣60a﹣1800﹣2a2π

=80a2﹣60a﹣1800﹣2a2×3

=74a2﹣60a﹣1800

(2)、当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)已知:|a|=3,b2=4,ab<0,求a﹣b的值.

(2)已知关于x的方程=与方程=3y﹣2的解互为倒数,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是矩形ABCDAD边上一个动点,矩形的两条边AB、BC长分别是68,则点P到矩形的两条对角线距离之和PE+PF是(

A. 4.8 B. 5 C. 6 D. 7.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).
(1)求直线AB的解析式;
(2)若直线AB上的点C在第一象限,且S△BOC=2,求经过点C的反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.

(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?

(2)两个正方形的面积之和可能等于12cm2? 若能,求出两段铁丝的长度;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

小明遇到一个问题:AD是△ABC的中线, MBC边上任意一点(不与点D重合),过点M作一直线,使其等分△ABC的面积.

他的做法是:如图1,连结AM,过点DDN//AMAC于点N,作直线MN,直线MN即为所求直线.

请你参考小明的做法,解决下列问题:

(1)如图2, AE等分四边形ABCD的面积,MCD边上一点,过M直线MN,使其等分四边形ABCD的面积(要求:在图2中画出直线MN,并保留作图痕迹)

(2)如图3,求作过点A的直线AE,使其等分四边形ABCD的面积(要求:在图3中画出直线AE,并保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知代数式Ax2+3xyxB=2x2xy+4y-1

(1)xy=-2时,求2AB的值;

(2)2AB的值与y的取值无关,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.
(1)若DE=BF,求证:四边形AFCE是平行四边形;
(2)若四边形AFCE是菱形,求菱形AFCE的周长.

查看答案和解析>>

同步练习册答案