精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料:

小明遇到一个问题:AD是△ABC的中线, MBC边上任意一点(不与点D重合),过点M作一直线,使其等分△ABC的面积.

他的做法是:如图1,连结AM,过点DDN//AMAC于点N,作直线MN,直线MN即为所求直线.

请你参考小明的做法,解决下列问题:

(1)如图2, AE等分四边形ABCD的面积,MCD边上一点,过M直线MN,使其等分四边形ABCD的面积(要求:在图2中画出直线MN,并保留作图痕迹)

(2)如图3,求作过点A的直线AE,使其等分四边形ABCD的面积(要求:在图3中画出直线AE,并保留作图痕迹).

【答案】见解析

【解析】(1)、连接AM,过EEN∥AM,交ADN,再做直线MN即可;(2)、取对角线BD的中点O,连接AO、CO,AC,过点OOE∥ACCDE,直线AE就是所求直线.

(1)如图.连接AM,过E作EN∥AM,交AD于N,再做直线MN;

(2)如图.取对角线BD的中点O,连接AO、CO,AC,过点O作OE∥AC交CD于E,直线AE就是所求直线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知k是不等于0的常数,反比例函数与二次函数在同一坐标系的大致图象如图,则它们的解析式可能分别是(

A.y=﹣ ,y=﹣kx2+k
B.y= ,y=﹣kx2+k
C.y= ,y=kx2+k
D.y=﹣ ,y=﹣kx2﹣k

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,O为直线AB上一点,OC平分∠AOEDOE=90°,则以下结论正确的有____________.(只填序号)

①∠AOD与∠BOE互为余角;

OD平分∠COA

③∠BOE=56°40′,则∠COE=61°40′

④∠BOE=2COD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,梯形的上底为+2-10,下底为3-5-80,高为40.(3)

(1)用式子表示图中阴影部分的面积;

(2)当=10时,求阴影部分面积的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:

(1)求|5﹣(﹣2)|=________.

(2)数轴上表示x和﹣1的两点之间的距离表示为________.

(3)找出所有符合条件的整数x,使|x+5|+|x﹣2|=7,这样的整数有________个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图1,点在直线的同侧,在直线上找一点,使得的值最小.小明的思路是:如图2,作点关于直线的对称点,连接,则与直线的交点即为所求.

请你参考小明同学的思路,探究并解决下列问题:

(1)如图3,在图2的基础上,设与直线的交点为,过点,垂足为. ,写出的值为____________

(2)将(1)中的条件“”去掉,换成“”,其它条件不变,写出此时的值 ___________

(3)+的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:

(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;

(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)如图1所示,平行四边形纸片ABCD中,AD=5,SABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D是形.
(2)如图2所示,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.
①求证:四边形AFF′D是菱形;
②求四边形AFF′D两条对角线的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.
(1)判断直线AC与⊙O的位置关系,并说明理由;
(2)当BD=6,AB=10时,求⊙O的半径.

查看答案和解析>>

同步练习册答案