精英家教网 > 初中数学 > 题目详情

【题目】阅读下面材料: 如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.
观察图象可知:
①当x=﹣3或1时,y1=y2
②当﹣3<x<0或x>1时,y1>y2 , 即通过观察函数的图象,可以得到不等式ax+b> 的解集.
有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.
某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.

下面是他的探究过程,请将(2)、(3)、(4)补充完整:
(1)①将不等式按条件进行转化: 当x=0时,原不等式不成立;
当x>0时,原不等式可以转化为x2+4x﹣1>
当x<0时,原不等式可以转化为x2+4x﹣1<
②构造函数,画出图象
设y3=x2+4x﹣1,y4= ,在同一坐标系中分别画出这两个函数的图象.
双曲线y4= 如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)
(2)确定两个函数图象公共点的横坐标 观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为
(3)借助图象,写出解集 结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为

【答案】
(1)解:


(2)±1和﹣4
(3)x>1或﹣4<x<﹣1
【解析】解:(2)两个函数图象公共点的横坐标是±1和﹣4. 则满足y3=y4的所有x的值为±1和﹣4.
故答案是:±1和﹣4;(3)不等式x3+4x2﹣x﹣4>0即当x>0时,x2+4x﹣1> ,此时x的范围是:x>1;
当x<0时,x2+4x﹣1< ,则﹣4<x<﹣1.
故答案是:x>1或﹣4<x<﹣1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC 中,∠A+∠B =900.

⑴根据要求画图:

①过点C画直线 MN ∥AB

②过点C画AB的垂线,交AB于点D.

⑵请在⑴的基础上回答下列问题:

①已知∠B+∠DCB=900,则∠A与∠DCB 的大小关系为__________,理由是__________.

②图中线段_________的长度表示点 A 到直线CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上三点AOB表示的数分别为60,-4,动点PA出发,以每秒6个单位的速度沿数轴向左匀速运动.

1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是

2)另一动点RB出发,以每秒4个单位的速度沿数轴向左匀速运动,若点PR同时出发,问点P运动多少时间追上点R

3)若MAP的中点,NPB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)
阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.
(1)再次阅读后,发现AB=寸,CD=寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件.
(2)帮助小智求出⊙O的直径

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线y=x2+(2m﹣1)x+m2﹣1经过坐标原点,且当x<0时,y随x的增大而减小.
(1)求抛物线的解析式;
(2)结合图象写出,0<x<4时,直接写出y的取值范围
(3)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C.当BC=1时,求出矩形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)已知:|a|=3,b2=4,ab<0,求a﹣b的值.

(2)已知关于x的方程=与方程=3y﹣2的解互为倒数,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB是直角,OA平分∠COD,OE平分∠BOD,若∠BOE=23°,则∠BOC的度数是(  )

A. 113° B. 134° C. 136° D. 144°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OC在∠BOD内.

1)如果∠AOC和∠BOD都是直角.

①若∠BOC=60°,则∠AOD的度数是   

②猜想∠BOC与∠AOD的数量关系,并说明理由;

2)如果∠AOC=BOD=x°AOD=y°,求∠BOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).
(1)求直线AB的解析式;
(2)若直线AB上的点C在第一象限,且S△BOC=2,求经过点C的反比例函数的解析式.

查看答案和解析>>

同步练习册答案