【题目】如图,已知直线交坐标轴于A、B点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.
(1)求点C、D的坐标
(2)求抛物线的解析式
(3)若抛物线与正方形沿射线AB下滑,直至点C落在x轴上时停止,求抛物线上C、E两点间的抛物线所扫过的面积.
【答案】(1)C(3,2),D(1,3);(2)y=-x2+x+1;(3)10.
【解析】
试题分析:(1)分别过C、D两点作x轴、y轴的垂线,利用三角形全等的关系可确定C、D两点的坐标;
(2)根据A、C、D三点的坐标求抛物线解析式;
(3)由平移的性质可判断线段CE所扫过的部分为平行四边形,CC′为底,BC为高,由此求出C、E两点间的抛物线所扫过的面积.
试题解析:(1)如图,分别过C、D两点作x轴、y轴的垂线,垂足为M、N,
由直线AB的解析式得AO=1,OB=2,
由正方形的性质可证△ADN≌△BAO≌△CBM,
∴DN=BM=AO=1,AN=CM=BO=2,
∴C(3,2),D(1,3);
(2)设抛物线解析式为y=ax2+bx+c,
将A(0,1),C(3,2),D(1,3)三点坐标代入,得,
解得,
∴y=-x2+x+1;
(3)∵AB=BC=,
由△BCC′∽△AOB,得,
∴CC′=2BC=2,
由割补法可知,抛物线上C、E两点间的抛物线所扫过的面积=SCEE′C′=CC′×BC=2×=10,
即抛物线上C、E两点间的抛物线所扫过的面积为10.
科目:初中数学 来源: 题型:
【题目】下列说法中正确的有 ( )
①顶点在圆上的角是圆周角;②相等的圆周角所对的弧相等;③圆心角的度数等于它所对弧的度数;④圆周角的度数等于它所对弧的度数的一半.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com