分析 先根据勾股定理计算出BC=6,由点D是斜边AB的中点,根据直角三角形斜边上的中线等于斜边的一半得DC=DB,则∠DCB=∠B,再根据旋转的性质得∠B=∠B′,CA=CA′=8,AB=A′B′=10,∠ACB=∠A′CB′=90°,则∠B′=∠DCB,得到A′B′∥BC,所以A′B′⊥AC,利用面积法可计算出CE=$\frac{24}{5}$,AE=AC-CE=$\frac{16}{5}$,然后在Rt△A′CE中,利用勾股定理计算出A′E=$\frac{32}{5}$,再在Rt△AA′E中利用勾股定理可计算出AA′.
解答 解:设AC与A′B′的交点为E,如图,![]()
∵∠C=90°,AB=10,AC=8,
∴BC=$\sqrt{1{0}^{2}-{8}^{2}}$=6,
∵点D是斜边AB的中点,
∴DC=DB,
∴∠DCB=∠B,
∵△ABC绕点C旋转,使得点B落在射线CD上,点A落在点A′,
∴∠B=∠B′,CA=CA′=8,AB=A′B′=10,∠ACB=∠A′CB′=90°,
∴∠B′=∠DCB,
∴A′B′∥BC,
而∠ACB=90°,
∴A′B′⊥AC,
$\frac{1}{2}$CE•A′B′=$\frac{1}{2}$A′C•CB′,
∴CE=$\frac{24}{5}$,
∴AE=AC-CE=8-$\frac{24}{5}$=$\frac{16}{5}$,
在Rt△A′CE中,A′E=$\sqrt{A′{C}^{2}-C{E}^{2}}$=$\frac{32}{5}$,
在Rt△AA′E中,AA′=$\sqrt{A'{E}^{2}+A{E}^{2}}$=$\sqrt{(\frac{32}{5})^{2}+(\frac{16}{5})^{2}}$=$\frac{16}{5}$$\sqrt{5}$;
故答案为:$\frac{16}{5}$$\sqrt{5}$.
点评 本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了直角三角形斜边上的中线性质以及勾股定理.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com