【题目】如图,AB是⊙O的直径,弦CD⊥AB于H,点G是⊙O上一点,AG交CD于点K,延长KD至点E,使KE=GE,分别延长EG、AB相交于点F.
(1)求证:EF是⊙O的切线;
(2)若AC∥EF,试探究KG、KD、GE之间的关系,并说明理由;
(3)在(2)的条件下,若sinE=,AK=2,求FG的长.
【答案】(1)见解析;(2)见解析;(3).
【解析】
(1)连接OG,首先证明∠EGK=∠EKG,再证明∠HAK+∠KGE=90°,进而得到∠OGA+∠KGE=90°即GO⊥EF,进而证明EF是⊙O的切线;
(2)连接GD,由平行线的性质得到相等的角,进而根据相似三角形的判定得到△GKD∽△EKG,然后根据相似三角形的对应边成比例可得证;
(3)连接OG,OC,根据平行线的性质得到∠E=∠ACH,然后根据已知的sinE=设出AH=3t,则AC=5t,CH=4t,然后根据勾股定理求出CH、AH的长,设⊙O半径为r,在Rt△OCH中,OC=r,OH=r﹣3,由勾股定理得:OH2+CH2=OC2,求出r的值,再由OG的长和tan∠OFG=tan∠CAH,利用三角函数在Rt△OGF中计算出FG的长.
证明:(1)如图1,连接OG.
∵KE=EG,
∴∠EKG=∠EGK,
∵∠AKH=∠EKG,
∴∠EGK=∠AKH,
∴OA=OG,
∴∠OGA=∠OAK,
∵AB⊥CD,
∴∠AHK=90°,
∴∠AKH+∠OAG=90°,
∴∠OGA+∠EGK=90°,
∴∠OGE=90°,
∴EF是⊙O的切线;
(2)KG2=KDGE,理由是:
连接GD,如图2,
∵AC∥EF,
∴∠C=∠E,
∵∠C=∠AGD,
∴∠E=∠AGD,
∵∠GKD=∠GKD,
∴△GKD∽△EKG,
∴,
∴KG2=KDEK,
由(1)得:EK=GE,
∴KG2=KDGE;
(3)连接OG,OC,如图3所示,
∵AC∥EF,
∴∠E=∠ACH,
∵sinE=sin∠ACH=,
设AH=3t,则AC=5t,CH=4t,
∵KE=GE,AC∥EF,
∴CK=AC=5t,
∴HK=CK﹣CH=t.
在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,
即(3t)2+t2=(2)2,解得t=±.
∴CH=4,AH=3,
设⊙O半径为r,在Rt△OCH中,OC=r,OH=r﹣3,
由勾股定理得:OH2+CH2=OC2,
即(r﹣3)2+(4)2=r2,解得r=,
∵EF为切线,
∴△OGF为直角三角形,
在Rt△OGF中,OG=,tan∠OFG=tan∠CAH===,
∴FG==.
科目:初中数学 来源: 题型:
【题目】“校园安全”受到全社会的广泛关注,东营市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有_______人,扇形统计图中“基本了解”部分所对应扇形的圆心角为_______°;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;
(4)若从对校园安全知识达到“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在半径为6cm的⊙O中,点A是劣弧BC的中点,点D是优弧BC上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6cm;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是( )
A. ①③ B. ①②③④ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角α=37°,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37°=,cos37°=,tan37°=)
求把手端点A到BD的距离;
求CH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若AD=6cm,CD=3cm,则图中阴影部分的面积是____cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知A(﹣1,0),C(0,3)
(1)求该抛物线的表达式;
(2)求BC的解析式;
(3)点M是对称轴右侧点B左侧的抛物线上一个动点,当点M运动到什么位置时,△BCM的面积最大?求△BCM面积的最大值及此时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,根据要求回答下列问题:
(1)点A关于y轴对称点A′的坐标是 ;点B关于y轴对称点B′的坐标是
(2)作出△ABC关于y轴对称的图形△A′B′C′(不要求写作法)
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在RtΔABC中,∠ACB=90°,AC=9,BC=12,AD是∠BAC的平分线,若点P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( )
A.B.C.12D.15
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com