精英家教网 > 初中数学 > 题目详情

【题目】综合题。
(1)计算:(π﹣3.14)0+( 1+|﹣2 |﹣
(2)先化简,再求值: ÷( ﹣x+1),并从﹣tan60°≤x≤2cos30°取出一个合适的整数,求出式子的值.

【答案】
(1)解:(π﹣3.14)0+( 1+|﹣2 |﹣

=1+2+2

=3;


(2)解: ÷( ﹣x+1)

=

=

=

∵﹣tan60°≤x≤2cos30°

∴当x=1时,原式= =﹣1.


【解析】(1)根据零指数幂、负整数指数幂、绝对值可以解答本题;(2)先化简题目中的式子,然后根据﹣tan60°≤x≤2cos30°,从中选取使得原分式有意义的x的整数值代入即可解答本题.
【考点精析】认真审题,首先需要了解零指数幂法则(零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数)),还要掌握整数指数幂的运算性质(aman=am+n(m、n是正整数);(amn=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数))的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系中,抛物线y=ax2﹣x+3(a≠0)交x轴于A、B两点,交y轴于点C,且对称轴为直线x=﹣2.
(1)求该抛物线的解析式及顶点D的坐标;
(2)若点P(0,t)是y轴上的一个动点,请进行如下探究: 探究一:如图1,设△PAD的面积为S,令W=tS,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;

探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.(参考资料:抛物线y=ax2+bx+c(a≠0)对称轴是直线x=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A1、A2、A3、…、An(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数2018,则点A1所表示的数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:

(1)放入一个小球量桶中水面升高   cm;

(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的函数关系式;

(3)当量桶中水面上升至距离量桶顶部3cm时,应在量桶中放入几个小球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义一种新运算”:ab=2a﹣ab,比如1(﹣3)=2×1﹣1×(﹣3)=5

(1)求(﹣2)3的值;

(2)若(﹣3)x=(x+1)5,求x的值;

(3)若x1=2(1y),求代数式x+y+1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.

类别

时间t(小时)

人数

A

t≤0.5

5

B

0.5<t≤1

20

C

1<t≤1.5

a

D

1.5<t≤2

30

E

t>2

10

请根据图表信息解答下列问题:

(1)a=   

(2)补全条形统计图;

(3)小王说:我每天的锻炼时间是调查所得数据的中位数,问小王每天进行体育锻炼的时间在什么范围内?

(4)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】临海市初中第三教研区为了丰富学生课余活动,组织同学开展每周一次的社团活动,活动内容有足球、跳绳、跳舞、篮球、象棋共5项,为方便组织,规定每位同学只能报一项活动,根据报名绘制了如下两幅尚不完整的统计图,解答下列问题:
(1)将条形统计图补充完整;
(2)写出扇形统计图中的m和n的值;
(3)瑶瑶和欣欣两名同学对足球、篮球、象棋三项活动都很感兴趣,决定从三项活动中随机抽取一项参加,利用树状图或列表表示所有可能结果,并求出两人参加同一项目的概率;
(4)由于场地限制,参加足球活动的学生人数不能超过参加其余活动学生人数的 ,那么至少几位同学需要从参加足球活动调整到参加其余活动?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地电话拨号上网有两种收费方式,用户可以任选其一:

(A)计时制,0.08/分;

(B)包月制,50/月(限一部个人住宅电话上网);

此外,每种上网方式都附加通信费0.02/分.

(1)某用户某月上网时间为x分钟,则该用户在A、B两种收费方式下应支付费用各多少元?

(2)如果一个月内上网200分钟和300分钟,按两种收费方式各需交费多少元?

(3)是否存在某一时间,会出现两种收费方式一样的情况?如果存在,请求出这时的上网时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,O是对角线ACBD的交点,MBC边上的动点(M不与B、C重合),过点CCN垂直DMAB于点N,连结OM、ON、MN.下列五个结论:①△CNB≌△DMC;ONOM;AB=2,则的最小值是1;.其中正确结论是_________.(只填番号)

查看答案和解析>>

同步练习册答案