精英家教网 > 初中数学 > 题目详情

【题目】某地电话拨号上网有两种收费方式,用户可以任选其一:

(A)计时制,0.08/分;

(B)包月制,50/月(限一部个人住宅电话上网);

此外,每种上网方式都附加通信费0.02/分.

(1)某用户某月上网时间为x分钟,则该用户在A、B两种收费方式下应支付费用各多少元?

(2)如果一个月内上网200分钟和300分钟,按两种收费方式各需交费多少元?

(3)是否存在某一时间,会出现两种收费方式一样的情况?如果存在,请求出这时的上网时间.

【答案】(1)A: 0.1x(元),B:50+0.02x(元);(2)54;56;(3)625分钟.

【解析】

(1)(A)计时制的费用=上网时间(0.08+0.02);(B)包月制的费用=50+上网费用,把相关数值代入即可;

(2)x=200,300代入(1)得到的式子,计算结果比较即可;

(3)让两种费用相等,列出方程求解即可;

解:(1)A收费方式所需费用为(0.08+0.02)x=0.1x(元),

B收费方式所需费用为50+0.02x(元).

(2)当x=200时,0.1x=20,50+0.02x=54;

当x=300时,0.1x=30,50+0.02x=56.

(3)根据题意得:50+0.02x=0.1x,

解得:x=625.

答:存在625分钟时间,使得两种收费方式一样.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,点A是半圆上一个三等分点,点B是 的中点,点P是直径 MN上一动点,若⊙O的直径为2,则AP+BP的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)计算:(π﹣3.14)0+( 1+|﹣2 |﹣
(2)先化简,再求值: ÷( ﹣x+1),并从﹣tan60°≤x≤2cos30°取出一个合适的整数,求出式子的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.

(1)求A种,B种树木每棵各多少元?

(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD=BC,C=D=90°,下列结论中不成立的是( )

A. DAE=CBE B. CE=DE C. DAECBE不一定全等 D. 1=2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知圆形纸片⊙O的直径为2,将其沿着两条互相垂直的直径折叠,得到四层的扇形,将最上的一层“撑”开来,“鼓”成一个无底的圆锥,则这个圆锥的高是(
A.
B.
C.
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为正方形ABCD的对角线AC上任意一点,PE⊥ABE,PF⊥BCF,AC=则四边形PEBF的周长为( )

A. B. 2 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知y+6与x-1成正比例,且当x=3时,y=-10.

(1)求y与x的函数关系式;

(2)画出函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A(0,b)、B(a,0)、D(d,0),且a、b、d满足=0,DEx轴且∠BED=ABD,BEy轴于点C,AEx轴于点F

(1)求点A、B、D的坐标;

(2)求点E、F的坐标;

(3)如图,点P(0,1)作x轴的平行线,在该平行线上有一点Q(点Q在点P的右侧)使∠QEM=45°,QEx轴于点N,MEy轴的正半轴于点M,求的值.

查看答案和解析>>

同步练习册答案