精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰直角三角形中,,一个三角尺的直角顶点与边的中点重合,且两条直角边分别经过点和点,将三角尺绕点按顺时针方向旋转任意一个锐角,当三角尺的两直角边与分别交于点时,下列结论中错误的是( )

A.B.

C.D.

【答案】C

【解析】

连接AO,易证EOA≌△FOCASA),利用全等三角形的性质可得出EA=FC,进而可得出AE+AF=AC,选项A正确;由三角形内角和定理结合∠B+C=90°,∠EOB+FOC=90°可得出∠BEO+OFC=180°,选项B正确;由EOA≌△FOC可得出SEOA=SFOC,结合图形可得出S四边形AEOF=SEOA+SAOF=SFOC+SAOF=SAOC=SABC,选项D正确.综上,此题得解.

连接AO,如图所示.

∵△ABC为等腰直角三角形,点OBC的中点,

OA=OC,∠AOC=90°,∠BAO=ACO=45°

∵∠EOA+AOF=EOF=90°,∠AOF+FOC=AOC=90°

∴∠EOA=FOC

EOAFOC中,

∴△EOA≌△FOCASA),

EA=FC

AE+AF=AF+FC=AC,选项A正确;

∵∠B+BEO+EOB=FOC+C+OFC=180°,∠B+C=90°,∠EOB+FOC=180°-EOF=90°

∴∠BEO+OFC=180°,选项B正确;

∵△EOA≌△FOC

SEOA=SFOC

S四边形AEOF=SEOA+SAOF=SFOC+SAOF=SAOC=SABC,选项D正确.

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB=10BC=15tanA=PAD边上任意一点,连结PB,将PB绕点P逆时针旋转90°得到线段PQ.若点Q恰好落在平行四边形ABCD的边所在的直线上,则PB旋转到PQ所扫过的面积____(结果保留π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点EAD边上一点,AEED12,连接ACBE交于点F.SAEF1,则S四边形CDEF_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,双曲线与直线相交于,点Px轴上一动点.

1)求双曲线与直线的解析式;

2)当时,直接写出x的取值范围;

3)当是等腰三角形时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD//CO

1)求证:△ADB∽△OBC

2)若AB=2BC=,求AD的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于⊙OAB为直径,作ODABAC于点D,延长BCOD交于点F,过点C作⊙O的切线CE,交OF于点E

1)求证:ECED

2)如果OA4EF3,求弦AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作发现:如图,已知ABCADE均为等腰三角形,ABACADAE,将这两个三角形放置在一起,使点BDE在同一直线上,连接CE

1)如图1,若∠ABC=∠ACB=∠ADE=∠AED55°,求证:BAD≌△CAE

2)在(1)的条件下,求∠BEC的度数;

拓广探索:(3)如图2,若∠CAB=∠EAD120°BD4CFBCEBE边上的高,请直接写出EF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,

1)求证:△AOE≌△COD

2)连接DE,若DEAC35,求tan∠ACB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点分别在直线轴上.△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形,如果11),),那么点的纵坐标是_______

查看答案和解析>>

同步练习册答案