精英家教网 > 初中数学 > 题目详情

下列四个立体图形中,左视图为矩形的是(  )

 

A.

①③

B.

①④

C.

②③

D.

③④

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是

A.       B.            C.        D.

 


    

查看答案和解析>>

科目:初中数学 来源: 题型:


如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).

(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;

(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.

①试求△PAD的面积的最大值;

②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


解不等式组

请结合题意,完成本题解答.

(Ⅰ)解不等式①,得   

(Ⅱ)解不等式②,得   

(Ⅲ)把不等式①和②的解集在数轴上表示出来:

(Ⅳ)原不等式组的解集为   

查看答案和解析>>

科目:初中数学 来源: 题型:


问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.

【发现证明】

小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.

【类比引申】

如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足   关系时,仍有EF=BE+FD.

【探究应用】

如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:


当1≤x≤2时,ax+2>0,则a的取值范围是(  )

 

A.

a>﹣1

B.

a>﹣2

C.

a>0

D.

a>﹣1且a≠0

 

查看答案和解析>>

科目:初中数学 来源: 题型:


现有多个全等直角三角形,先取三个拼成如图1所示的形状,R为DE的中点,BR分别交AC,CD于P,Q,易得BP:QR:QR=3:1:2.

(1)若取四个直角三角形拼成如图2所示的形状,S为EF的中点,BS分别交AC,CD,DE于P,Q,R,则BP:PQ:QR:RS=  

(2)若取五个直角三角形拼成如图3所示的形状,T为FG的中点,BT分别交AC,CD,DE,EF于P,Q,R,S,则BP:PQ:QR:RS:ST= 

 

查看答案和解析>>

科目:初中数学 来源: 题型:


下列图形具有稳定性的是(  )

 

A.

正方形

B.

矩形

C.

平行四边形

D.

直角三角形

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.

(1)求证:BE=CE;

(2)试判断四边形BFCD的形状,并说明理由;

(3)若BC=8,AD=10,求CD的长.

 

查看答案和解析>>

同步练习册答案