精英家教网 > 初中数学 > 题目详情

【题目】如图,一张三角形纸片ABC,其中∠C=90°,AC=6,BC=8.小静同学将纸片做两次折叠:第一次使点A落在C处,折痕记为m;然后将纸片展平做第二次折叠,使点A落在B处,折痕记为n.则m,n的大小关系是

【答案】m>n
【解析】解:如图所示:
由折叠的性质得:DE是线段AC的垂直平分线,
∴DE是△ABC的中位线,
∴m=DE= BC=4;
∵∠C=90°,AC=6,BC=8,
∴AB= =10,
由折叠的性质得:AD=BD= AB=5,∠BDF=90°,
∵∠B=∠B,
∴△BDF∽△BCA,
,即
解得:DF= ,即n=
∴m>n;
所以答案是:m>n.
【考点精析】通过灵活运用翻折变换(折叠问题),掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长是16,点E在边AB上,AE=3,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.

(1)当∠BEF=45°时,求证:CF=AE;
(2)当B′D=B′C时,求BF的长;
(3)求△CB′F周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,正方形 ABCD 的面积为 16,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P,使 PD+PE 的和最小,则这个最小值为_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,如果ABCD,∠B=37°,∠D=37°,那么BCDE平行吗?完成下面解答过中的填空或填写理由.

解:ABCD已知),

∴∠B      

∵∠B=∠D=37°(已知)

   =∠D (等量代换)

BCDE   ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料: 在数学课上,老师提出如下问题:
已知:如图,四边形ABCD是平行四边形.求作:菱形AECF,使点E,F分别在BC,AD上.
小凯的作法如下:
(i)连接AC;
(ii)作AC的垂直平分线EF分别交BC,AD于E,F;
(iii)连接AE,CF.
所以四边形AECF是菱形.
老师说:“小凯的作法正确.”
请回答:在小凯的作法中,判定四边形AECF是菱形的依据是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图1为北京城市女生从出生到15岁的平均身高统计图,图2是北京城市某女生从出生到12岁的身高统计图.
请你根据以上信息预测该女生15岁时的身高约为 , 你的预测理由是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角板是学习数学的重要工具,将一副三角板中的两块直角三角板的直角顶点按如图方式叠放在一起,当且点在直线的上方时,解决下列问题:(友情提示:

1)①若,则的度数为  

②若,则的度数为  

2)由(1)猜想的数量关系,并说明理由.

3)这两块三角板是否存在一组边互相平行?若存在,请直接写出的角度所有可能的值(不必说明理由);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线ABDFD+B=180°

1)求证:DEBC

2)如果∠AMD=75°,求∠AGC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将长方形纸片ABCD沿折痕EF对折,使点C与点A重合,点D落在点G处,如果此时∠BAF刚好等于30°,AD=6,求△AEF的周长.

查看答案和解析>>

同步练习册答案