【题目】如图:AB是⊙O的直径,AC交⊙O于G,E是AG上一点,D为△BCE内心,BE交AD于F,且∠DBE=∠BAD.
(1)求证:BC是⊙O的切线;
(2)求证:DF=DG;
(3)若∠ADG=45°,DF=1,则有两个结论:①ADBD的值不变;②AD-BD的值不变,其中有且只有一个结论正确,请选择正确的结论,证明并求其值.
【答案】(1)证明见解析;(2)证明见解析;(3)正确的结论:AD﹣BD的值不变,证明见解析,AD﹣BD=.
【解析】试题分析:(1)根据三角形内心的性质得出∠DBC=∠DBE,进而根据已知求得∠DBC=∠BAD,根据圆周角定理即可证得从而求得AB⊥BC,证得结论;
(2)连接,根据圆内接四边形外角的性质得出由三角形外角的性质求得证得 进而求得 由三角形内心的性质得出 然后根据AAS证得△DEF≌△DEG,从而证得
(3)在AD上截取DH=BD,连接BH、BG,证得是等腰直角三角形,得出然后证得△ABH∽△GBD,得出求得即可求得
试题解析:(1)证明:∵D为△BCE内心,
∴∠DBC=∠DBE,
∵∠DBE=∠BAD.
∴∠DBC=∠BAD,
∵AB是的直径,
∴
∴
∴
即
∴AB⊥BC,
∴BC是的切线;
(2)证明:如图1,连接DE,
∵∠DBC=∠BAD,∠DBC=∠DBE,
∴∠DBE=∠BAD,
∴∠ABF+∠BAD=∠ABF+∠DBE,
∴∠BFD=∠ABD,
∵∠DGC=∠ABD,
∴∠BFD=∠DGC,
∴∠DFE=∠DGE,
∵D为△BCE内心,
∴∠DEG=∠DEB,
在△DEF和△DEG中
,
∴△DEF≌△DEG(AAS),
∴DF=DG;
(3)ADBD的值不变;
如图2,在AD上截取DH=BD,连接BH、BG,
∵AB是直径,
∴
∵
∴
∴
∵
∴
∴
∵
∴∠AHB=∠BDG,
∵∠BAD=∠BGD,
∴△ABH∽△GBD,
∴
∵DG=1,
∴
∵ADBD=ADDH=AH,
∴
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=,点P在AC上运动,点D在AB上,PD始终保持与PA相等,BD的垂直平分线交BC于点E,交BD于点F,连接DE.若AC=6,BC=8,PA=2,则线段DE的长为________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与轴、轴分别交于两点,抛物线经过两点,与轴交于另一点.
(1)求抛物线解析式及点坐标;
(2)连接,求的面积;
(3)若点为抛物线上一动点,连接,当点运动到某一位置时,面积为的面积的倍,求此时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上有两点A、B,点B在点A的右侧,且AB=10,点A表示的数为﹣6.动点P从点A出发,以每秒4个单位长度的速度沿数轴向右匀速运动.
(1)写出数轴上点B表示的数;
(2)经过多少时间,线段AP和BP的长度之和为18?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知平面上四个点.
(1)按下列要求画图(不写画法)
①连接,;②作直线;③作射线,交于点.
(2)在(1)所画的图形中共有__________条线段,__________条射线. (所画图形中不能再添加标注其他字母);
(3)通过测量线段,,,可知__________(填“”,“”或“”),可以解释这一现象的基本事实为:_______________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某河流防污治理工程已正式启动,由甲队单独做5个月后,乙队再加入合作3个月就可以完成这项工程。已知若甲队单独做需要10个月可以完成。
(1)乙队单独完成这项工程需要几个月?
(2)已知甲队每月施工费用为15万元,比乙队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲队做a个月,乙队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以矩形的顶点为坐标原点,所在直线为轴,所在直线为轴,建立平面直角坐标系.已知,,,点为轴上一动点,以为一边在右侧作正方形.
(1)若点与点重合,请直接写出点的坐标.
(2)若点在的延长线上,且,求点的坐标.
(3)若,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y与x-1成正比例,且函数图象经过点(3,-6).
(1)求这个函数的解析式并画出这个函数图象.
(2)已知图象上的两点C(x1,y1)、D(x2,y2),如果x1>x2,比较y1、y2的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com