【题目】小盛和丽丽在学完了有理数后做起了数学游戏
(1)规定用四个不重复(绝对值小于)的正整数通过加法运算后结果等于
小盛:;丽丽:,问是否还有其他的算式,如果有请写出来一个,如果没有,请简单说明理由;
(2)规定用四个不重复(绝对值小)的整数通过加法运算后结果等
小盛:;丽丽:;请根据要求再写出一个与他们不同的算式.
(3)用(2)中小盛和丽丽的算式继续排列下去组成一个数列,使相邻的四个数的和都等于,小盛:,,,,
丽丽:,,,,
则______;_______.求丽丽写出的数列的前项的和.
【答案】(1)没有,理由见解析;(2)(答案不唯一);(3),;数列的前项和为.
【解析】
(1)由于1+2+3+4=10,要和为12,在此基础上加2,由此思考得出结论;
(2)可在-2-3+8+9=12上变化两个数试试;
(3)能过和为12计算,便可得x,y,丽丽写出的数每4个数为一组依次重复出现,按此规律得前4组数有16项其和为12×4,再加上第5组的前3个数便可得前19项的和.
解:(1)没有其他算式了,
四个小于不同的正整数最小的和为,要想得到和为,需要加,
则任何两个数加或者任意一个数加,
又因为数字不能重复,
所以只能在或4+1,3+2,或4+2;
故符合条件的算式有,;只有两个
(2)由题意可得:;
(3)由题意得,x=12-(-3+8+9)=-2;
y=12-(0+8+7)=-3;
由题意知,丽丽写出的数每4个数(-3,0,8,7)为一组依次重复出现,
∵19÷4=4…3,
∴丽丽写出的数列的前19项的和=12×4+(-3+0+8)=53.
科目:初中数学 来源: 题型:
【题目】如图,点A、B为直线y=x上的两点,过A、B两点分别作y轴的平行线交双曲线(x>0)于点C、D两点.若BD=2AC,则4OC2﹣OD2的值为( )
A.5B.6C.7D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司研发了一款新型玩具,成本为每个50元,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于70%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)(x为整数)符合一次函数关系,如图所示
(1)求出y与x的函数关系式,并写出自变量x的取值范围;
(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元?
(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.
(1)请写出与之间的函数表达式;
(2)当为多少时,超市每天销售这种玩具可获利润2250元?
(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年是全面建成小康社会和“十三五”规划收官之年,为促进销售,某公司开发了A、B两项新产品,销售前景广阔.已知A、B的成本、售价和每日销量如下表所示:
成本(元/件) | 售价(元/件) | 销量(件/日) | |
A | 500 | 700 | 500 |
B | 800 | 1050 | 300 |
根据销售情况,公司对B项产品降价销售,同时对A项产品提价销售,发现B项产品每降价5元就多销售2件,A项产品每提价5元就可少销售1件,要保持每日的总销量不变,设A项产品每天少销售x个,每天总获利为y元.
(1)求y与x的函数关系式,并写出x的取值范围;
(2)要使每天利润不低于208000元,直接写出x的取值范围;
(3)该公司决定每销售一件A产品,就捐给红十字会a(0<a≤100)元作为抗疫基金.当40≤x≤50时,每日的最大利润为237250元,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数L:y=mx2+2mx+k(其中m,k是常数,k为正整数).
(1)若L经过点(1,k+6),求m的值.
(2)当m=2,若L与x轴有公共点时且公共点的横坐标为非零的整数,确定k的值;
(3)在(2)的条件下将L:y=mx2+2mx+k的图象向下平移8个单位,得到函数图象M,求M的解析式;
(4)将M的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象N,请结合新的图象解答问题,若直线y=x+b与N有两个公共点时,请直接写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经过多方努力,北京市2019年在区域空气质量同步改善、气象条件较常年整体有利的情况下,大气环境中细颗粒物()等四项主要污染物同比均明显改善对北京市空气质量的有关数据进行收集、整理、描述与分析,下面给出了部分信息:
a.北京市2019年空气质量各级别分布情况如下图(全年无严重污染日)(不完整):
b.北京市2019年大气环境中二氧化硫()的年均浓度为4微克/立方米,稳定达到国家二级标准(60微克/立方米);,二氧化氮()的年均浓度分别为68微克/立方米,37微克/立方米,均首次达到国家二级标准(70微克/立方米,40微克/立方米);的年均浓度为微克立方米,仍是北京市大气主要污染物,超过国家二级标准(35微克/立方米)的20%.
c.北京市2019年大气环境中月均浓度变化情况如下:
二氧化硫()月均浓度(单位:微克/立方米)如下(不完整):
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
月均浓度 | 9 | 6 | 5 | 4 | 3 | 2 | 3 | 3 | 5 | 4 |
(以上数据来源于北京市生态环境局官方网站)
根据以上信,回答下列问题:
(1)北京市2019年空气质量为“轻度污染”天数为( ).
A.82 B.92 C.102
(2)的值是______;
(3)北京市2019年大气环境中月均浓度达到国家二级标准的概率为______;
(4)北京市2019年大气环境中月均浓度的众数是4,则中位数是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年在2月27日国务院对外新闻发布会上,中国疾控中心发言人提到:“在新冠肺炎低风险区域出行仍需戴口罩.”某单位复工,采购了一批医用外科口罩,单价分别为1元、1.5元、3元、5元、10元,每天随机配发给每位在岗员工一个口罩.现将连续10天口罩配发量的情况制成如下统计表.
配发量/个 | 30 | 25 | 20 | 15 |
天数/天 | 2 | 1 |
已知配发量的平均数是23个,中位数是个,众数是个.
(1)求的值,并计算;
(2)将配发15个口罩那一天中不同型号的口罩发放情况进行统计,绘制成如图所示的尚不完整的统计图.补全统计图,并求小李当天获得不低于3元口罩的概率;
(3)若继续发放两天口罩,且这12天口罩配发量的众数与前10天口罩配发量的众数不同(例如:只要在第11天,第12天都发放30个口罩,则这12天口罩发放量的众数为30个和20个),写出这12天口罩配发量的众数(括号内示例情况不必再述).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径AB垂直于弦CD,垂足为H,点P是弧AC上的一点(点P不与A,C重合),连结PC,PD,PA,AD,点E在AP的延长线上,PD与AB交于点F.给出下列四个结论:①CH2=AH·BH;②弧AD=弧AC;③AD2=DF·DP;④∠EPC=∠APD.
其中正确的个数有
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com