【题目】把下列各式因式分解
(1)4a2﹣16
(2)(x2+4)2﹣16x2 .
科目:初中数学 来源: 题型:
【题目】为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:
(1)为确保%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?
(2)若将(1)中确定的基本用水量及其以内的部分按每立方米元交费,超过基本用水量的部分按每立方米元交费.设表示每户每月用水量(单位:),表示每户每月应交水费(单位:元),求与的函数关系式;
(3)某户家庭每月交水费是元,请按以上收费方式计算该家庭当月用水量是多少立方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P (3, 2),点Q(3, 2),点R(3, 2),点H(3, 2),下面选项中关于y轴对称的是( ).
A. P和Q B. P和H C. Q和R D. P和R
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分10分)
如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.
(1)求证:直线DM是⊙O的切线;
(2)求证:DE2=DF·DA.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC沿直线AB翻折后得到△ABC1 , 再将△ABC绕点A旋转后得到△AB2C2 , 对于下列两个结论:
①“△ABC1能绕一点旋转后与△AB2C2重合”;
②“△ABC1能沿一直线翻折后与△AB2C2重合”的正确性是( )
A.结论①、②都正确
B.结论①、②都错误
C.结论①正确、②错误
D.结论①错误、②正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,BC=AC=4,M为AB中点,D是射线BC上的一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED、ME,点D在运动过程中ME的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有这样一个问题:探究同一坐标系中系数互为倒数的正、反比例函数与的图象性质.小明根据学习函数的经验,对函数与,当k>0时的图象性质进行了探究,下面是小明的探究过程:
(1)如图所示,设函数与图像的交点为A,B.已知A的坐标为(-k,-1),则B点的坐标为 .
(2)若P点为第一象限内双曲线上不同于点B的任意一点.
①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.
证明过程如下:设P(m,),直线PA的解析式为y=ax+b(a≠0).
则 解得
所以,直线PA的解析式为 .
请把上面的解答过程补充完整,并完成剩余的证明.
②当P点坐标为(1,k)(k≠1)时,判断ΔPAB的形状,并用k表示出ΔPAB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.
例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P为△ABC的自相似点.
请你运用所学知识,结合上述材料,解决下列问题:
在平面直角坐标系中,点M是曲线C:上的任意一点,点N是x轴正半轴上的任意一点.
(1) 如图2,点P是OM上一点,∠ONP=∠M, 试说明点P是△MON的自相似点; 当点M的坐标是,点N的坐标是时,求点P 的坐标;
(2) 如图3,当点M的坐标是,点N的坐标是时,求△MON的自相似点的坐标;
(3) 是否存在点M和点N,使△MON无自相似点,?若存在,请直接写出这两点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com