【题目】(1)某商场用2800元从厂家购进A、B两种纪念品共50件,其中A种纪念品进价为每件80元,B种纪念品进价为每件40元.求A、B两种纪念品各购进多少件?
(2)商场要再次购进A、B两种纪念品共200件,若进价不变,且A种纪念品以每件110元售出,B种纪念品以每件55元售出.在购买这些纪念品的资金不超过12120元,且售完这些纪念品的利润不少于4500元的情况下,该商场共有几种进货方案?
请一一写出.
【答案】(1)A种纪念品购进20件,B种纪念品购进30件;(2)商场共有4种进货方案,它们分别是:①购进A种纪念品100件,B种纪念品100件;②购进A种纪念品101件,B种纪念品99件;③购进A种纪念品102件,B种纪念品98件;④购进A种纪念品103件,B种纪念品97件.
【解析】
(1)设A,B两种纪念品分别购进x件,y件,据题意列二元一次方程组求解;(2)设购进A种纪念品m件,则购进B种纪念品件,根据总成本=单价×购买数量,结合购买这些纪念品的资金不超过12120元,总利润=单件利润×购买数量结合这两种纪念品全部售出后总获利不低于4500元,即可得出关于m的一元一次不等式组,求解即可得出结论.
(1)设A,B两种纪念品分别购进x件,y件,据题意得
解得
答:A种纪念品购进20件,B种纪念品购进30件.
(2)设购进A种纪念品m件,则B种纪念品件,据题意得
解不等式组得
为整数,
,101,102,103
∴商场共有4种进货方案,它们分别是:
①购进A种纪念品100件,B种纪念品100件;
②购进A种纪念品101件,B种纪念品99件;
③购进A种纪念品102件,B种纪念品98件;
④购进A种纪念品103件,B种纪念品97件.
科目:初中数学 来源: 题型:
【题目】“绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?
(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】电力公司为鼓励市民节约用电,采取按月用电量分段收费办法.若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:
(1) 分别写出当0≤x≤100和x>100时,y与x的函数关系式
(2) 利用函数关系式,说明电力公司采取的收费标准
(3) 若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别与轴、轴交于点,,且点的坐标为,点为的中点.
(1)点的坐标是________,点的坐标是________;
(2)直线上有一点,若,试求出点的坐标;
(3)若点为直线上的一个动点,过点作轴的垂线,与直线交于点,设点的横坐标为,线段的长度为,求与的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读与理解:
如图,一只甲虫在5×5的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右)爬行记为“+”,向下(或向左)爬行记为“﹣”,并且第一个数表示左右方向,第二个数表示上下方向.
例如:从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2).
思考与应用:
(1)图中B→C( , )C→D( , )
(2)若甲虫从A到P的行走路线依次为:(+3,+2)→(+1,+3)→(+1,﹣2),请在图中标出P的位置.
(3)若甲虫的行走路线为A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),请计算该甲虫走过的总路程S.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.
(1)求证:四边形ABCD是菱形;
(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是某年11月月历
(1)用一个正方形在表中随意框住4个数,把其中最小的记为,则另外三个可用含的式子表示出来,从小到大依次为____________,_____________,_______________.
(2)在(1)中被框住的4个数之和等于76时,则被框住的4个数分别是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在阳光下,小东测得一根长为1 m的竹竿的影长为0.4 m.
(1)求同一时刻2 m的竹竿的影长;
(2)同一时刻小东在测量树的高度时,发现树的影子不全落在地面上,有一部分落在操场的第一级台阶上,如图,测得落在第一级台阶上的影子长为0.1 m,第一级台阶的高为0.3 m,落在地面上的影子长为4.3 m,求树的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】① 如图(1),直线l上有2个点,则图中有2条可用图中字母表示的射线:A1A2、A2A1,有1条线段:A1A2;
② 如图(2),直线l上有3个点,则图中有几条可用图中字母表示的射线,有几条线段,并分别用图中字母表示出来;
③ 如图(3),直线l上有n个点,则图中有多少条可用图中字母表示的射线,有多少条线段,分别用含n的代数式表示出来;
④ 应用(3)中发现的规律解决问题:某校七年级共有8个班进行足球比赛,准备进行循环赛(即每两队之间赛一场),预计全部赛完共需多少场比赛?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com