精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料

我们通过下列步骤估计方程2x2+x﹣2=0的根的所在的范围.

第一步:画出函数y=2x2+x﹣2的图象,发现图象是一条连续不断的曲线,且与x轴的一个

交点的横坐标在0,1之间.

第二步:因为当x=0时,y=﹣2<0;当x=1时,y=1>0.

所以可确定方程2x2+x﹣2=0的一个根x1所在的范围是0<x1<1.

第三步:通过取01的平均数缩小x1所在的范围;

x=,因为当x=时,y<0,

又因为当x=1时,y>0,

所以<x1<1.

(1)请仿照第二步,通过运算,验证2x2+x﹣2=0的另一个根x2所在范围是﹣2<x2<﹣1;

(2)在﹣2<x2<﹣1的基础上,重复应用第三步中取平均数的方法,将x2所在范围缩小至m<x2<n,使得n﹣m≤

【答案】(1)见解析;(2)见解析.

【解析】

(1)计算x=﹣2x=﹣1时,y的值,确定其x2所在范围是﹣2<x2<﹣1;

(2)先根据第三步﹣2和﹣1的平均数确定x=﹣,计算x=﹣y的值,得﹣<x2<﹣1,同理再求﹣1和﹣的平均数为﹣,计算x=﹣y的值,从而得结论.

(1)解:因为当x=﹣2时,y>0;当x=﹣1时,y<0,

所以方程2x2+x﹣2=0的另一个根x2所在的范围是﹣2<x2<﹣1.…

(2)取x==﹣,因为当x=﹣时,y=2×﹣2=1>0,

又因为当x=﹣1时,y=﹣1<0,

所以﹣<x2<﹣1,

x==﹣,因为当x=﹣时,y=2×﹣2=﹣<0,

又因为当x=﹣时,y>0,

所以﹣<x2<﹣

又因为﹣﹣(﹣)=

所以﹣<x2<﹣即为所求x2 的范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某天猫店销售某种规格学生软式排球,成本为每个30元.以往销售大数据分析表明:当每只售价为40元时,平均每月售出600个;若售价每上涨1元,其月销售量就减少20个,若售价每下降1元,其月销售量就增加200个.

(1)若售价上涨m元,每月能售出   个排球(用m的代数式表示).

(2)为迎接双十一,该天猫店在10月底备货1300个该规格的排球,并决定整个11月份进行降价促销,问售价定为多少元时,能使11月份这种规格排球获利恰好为8400

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,把矩形OCBA绕点C顺时针旋转α,得到矩形FCDE,FCAB交于点H,A(0,4),C(6,0).

(1)α=45°时,求H点的坐标.

(2)α=60°,ΔCBD是什么特殊的三角形?说明理由.

(3)AH=HC,求直线HC的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点D在⊙O外,∠BAD的平分线与⊙O交于点C,连接BCCD,且∠D90°

1)求证:CD是⊙O的切线;

2)若∠DCA60°BC3,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若二次函数y=|a|x2+bx+c的图象经过A(m,n)B(0,y1)C(3m,n)D(, y2)E(2,y3),则y1y2y3的大小关系是( ).

A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜负.

(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;

(2)此游戏的规则,对小明、小芳公平吗?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线 (k>0)和x轴上,已知点B1(1,1),B2(3,2),则Bn的坐标是__________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,C=90,AB=10cm,AC=8cm,P从点A开始出发向点C2cm/s的速度移动,QB点出发向点C1cm/s的速度移动,PQ分别同时从A,B出发,几秒后四边形APQB是△ABC面积的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A的坐标是(﹣10),点B的坐标是(90),以AB为直径作⊙O′,交y轴的负半轴于点C,连接ACBC,过ABC三点作抛物线.

1)求点C的坐标及抛物线的解析式;

2)点EAC延长线上一点,∠BCE的平分线CD⊙O′于点D,求点D的坐标;并直接写出直线BC、直线BD的解析式;

3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案