【题目】如图,AB是⊙O的直径,过点B做⊙O的切线BC,点D为⊙O上一点,且CD=CB,连结DO并延长交CB的延长线于点E.
(1)求证:CD是⊙O的切线;
(2)连接AC,若BE=4,DE=8,求线段AC的长.
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC摆放在平面直角坐标系中,点A在轴上,点C在轴上,OA=8,OC=6.
(1)求直线AC的表达式
(2)若直线与矩形OABC有公共点,求的取值范围;
(3)若点O与点B位于直线两侧,直接写出的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正三角形ABC的边长为3+,在三角形中放入正方形DEMN和正方形EFPH,使得D、E、F在边AB上,点P、N分别在边CB、CA上,设两个正方形的边长分别为m,n,则这两个正方形的面积和的最小值为( )
A. B. C. 3D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,二次函数的图像与x轴的一个交点为O(0,0),点P(m,0)是x轴正半轴上的一个动点.
(1)如图1,求二次函数的图像与x轴另一个交点的坐标;
(2)如图2,过点P作x轴的垂线交直线与点C,交二次函数图像于点D,
①当PD=2PC时,求m的值;
如图3,已知A(3,-3)在二次函数图像上,连结AP,求的最小值;
(3如图4,在第(2)小题的基础上,作直线OD,作点C关于直线OD的对称点C’,当C’落在坐标轴上时,请直接写出m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系xOy中的和点P,给出如下定义:如果在上存在一个动点Q,使得是以CQ为底的等腰三角形,且满足底角,那么就称点P为的“关联点”.
当的半径为2时,
在点,,中,的“关联点”是______;
如果点P在射线上,且P是的“关联点”,求点P的横坐标m的取值范围.
的圆心C在x轴上,半径为4,直线与两坐标轴交于A和B,如果线段AB上的点都是的“关联点”,直接写出圆心C的横坐标n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知m,n是方程x2-6x+5=0的两个实数根,且m<n,抛物线
y=-x2+bx+c的图象经过点A(m,0)、B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是的直径,点D是半径OA的中点,过点D作CD⊥AB,交于点C,点E为弧BC的中点,连结ED并延长ED交于点F,连结AF、BF,则( )
A. sin∠AFE=B. cos∠BFE=C. tan∠EDB=D. tan∠BAF=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了40m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(结果精确到1m)(参考数据:≈1.732,≈1.414)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com