精英家教网 > 初中数学 > 题目详情

【题目】如图ABC为等边三角形,直线aAB,D为直线BC上一点,∠ADE交直线a于点E,且∠ADE=60°.

(1)若DBC上(如图1)求证CD+CE=CA;

(2)若DCB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.

【答案】(1)证明见解析;(2)CD、CE、CA满足CE+CA=CD,证明见解析.

【解析】

(1)实际上也就是求两条线段相等,在AC上取一点F,使CF=CD,然后求证△ADF≌△EDC即可;(2)归根究底仍是求两条线段的问题,通过求证全等,最终得出几条边之间的关系.

(1)证明:在AC上取点F,使CF=CD,连接DF.

∵∠ACB=60°,

∴△DCF为等边三角形.

∴∠3+4=4+5=60°.

∴∠3=5.

∵∠1+ADE=2+ACE,

∴∠1=2.

ADFEDC中,

∴△ADF≌△EDC(AAS).

CE=AF.

CD+CE=CF+AF=CA.

(2)解:CD、CE、CA满足CE+CA=CD;

证明:

CA延长线上取CF=CD,连接DF.

∵△ABC为等边三角形,

∴∠ACD=60°,

CF=CD,

∴△FCD为等边三角形.

∵∠1+2=60°,

∵∠ADE=2+3=60°,

∴∠1=3.

DFADCE

∴△DFA≌△DCE(ASA).

AF=CE.

CE+CA=FA+CA=CF=CD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图数轴上A、B、C三点对应的数分别是a、b、7,满足OA=3,BC=1,P为数轴上一动点,点PA出发,沿数轴正方向以每秒1.5个单位长度的速度匀速运动,点Q从点C出发在射线CA上向点A匀速运动,且P、Q两点同时出发.

(1)a、b的值

(2)P运动到线段OB的中点时,点Q运动的位置恰好是线段AB靠近点B的三等分点,求点Q的运动速度

(3)P、Q两点间的距离是6个单位长度时,求OP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABCD,点P为定点,EF分别是ABCD上的动点.

(1)求证:∠P=∠BEP+∠PFD

(2)若点MCD上一点,如图2,∠FMN=∠BEP,且MNPFN.试说明∠EPF与∠PNM的数量关系,并证明你的结论;

(3)移动EF使得∠EPF=90°,如图3,作∠PEG=∠BEP,求∠AEG与∠PFD度数的比值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2

(1)求A1、A2的坐标;

(2)证明:O为线段A1A2的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形纸片ABCD中,∠A=70°,∠B=80°,将纸片折叠,使C,D落在AB边上的C′,D′处,折痕为MN,则∠AMD′+∠BNC′=(
A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).

月均用水量(单位:t)

频数

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

5≤x<6

10

20%

6≤x<7

12%

7≤x<8

3

6%

8≤x<9

2

4%


(1)请根据题中已有的信息补全频数分布表和频数分布直方图;
(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?
(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=CB,BE=BF,点A,B,C在同一条直线上,∠1=∠2.

(1)证明:△ABE≌△CBF;

(2)若∠FBE=40°,∠C=45°,求∠E的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)

(1)该几何体中有 小正方体?

(2)其中两面被涂到的有 个小正方体;没被涂到的有 个小正方体;

(3)求出涂上颜色部分的总面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料.

我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?

在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第nn个圆圈中数的和为n+n+n+…+n,即n2.这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2

(规律探究)

将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为   ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)=   ,因此,12+22+32+…+n2=   

(解决问题)

根据以上发现,计算:的结果为   

查看答案和解析>>

同步练习册答案