精英家教网 > 初中数学 > 题目详情

【题目】观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°已知楼房高AB约是45m , 根据以上观测数据可求观光塔的高CDm

【答案】135
【解析】∵爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,
∴∠ADB=30°,
RtABD中,
tan30°=
解得,
AD=45
∵在一楼房的底端A点处观测观光塔顶端C处的仰角是60°,
∴在RtACD中,
CD=ADtan60°=45 × =135米
故答案为135米
根据“爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°”可以求出AD的长,然后根据“在一楼房的底端A点处观测观光塔顶端C处的仰角是60°”可以求出CD的长

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=﹣ x2+ x+ ,铅球运行路线如图.
(1)求铅球推出的水平距离;
(2)通过计算说明铅球行进高度能否达到4m?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,正方形EFGH是由正方形ABCD经过位似变换得到的,点O是位似中心,EFGH分别是OAOBOCOD的中点,则正方形EFGH与正方形ABCD的面积比是(  )
A.1:6
B.1:5
C.1:4
D.1:2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A.B的距离,他们设计了如图所示的测量方案:从树A沿着垂直于AB的方向走到E , 再从E沿着垂直于AE的方向走到FCAE上一点,其中3位同学分别测得三组数据:①AC , ∠ACB;②EF.DE.AD;③CD , ∠ACB , ∠ADB.其中能根据所测数据求得A.B两树距离的有(  )

A.0组
B.一组
C.二组
D.三组

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图)已知测量仪器CD的高度为1米,则桥塔AB的高度约为(  )(参考数据:sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)

A.34米
B.38米
C.45米
D.50米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点DEFG , 已知∠CGD=42°

(1)求∠CEF的度数;
(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B , 交AC边于点H , 如图②所示,点HB在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,ECD的中点,连接AE、BE,BEAE,延长AEBC的延长线于点F.

求证:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是(  )
A.8
B.10
C.12
D.14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请按要求完成下面三道小题.

(1)如图1,AB=AC.这两条线段一定关于某条直线对称吗?如果是,请说明是哪条直线,并在图1中画出这条直线;如果不是,请说明理由.

(2)如图2,已知线段AB和点C.

求作线段CD,使它与AB成轴对称,且A与C是对称点,请画出图形,并简述画图过程.

(3)如图3,任意位置的两条线段AB,CD,AB=CD.你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请画出图形,并描述操作过程;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案